银行日常业务中涉及到各类凭证的识别录入,例如身份证录入、支票录入、对账单录入等。以往的录入方式主要是以人工录入为主,效率较低,人力成本较高。近几年来,OCR相关技术以其自动执行、人为干预较少等特点正逐步替代传统的人工录入方式。但OCR技术在实际应用中也存在一些问题,在各类凭证字段的识别中,手写体由于其字体差异性大、字数不固定、语义关联性较低、凭证背景干扰等原因,导致OCR识别率准确率不高,需要大量人工校正,对日常的银行录入业务造成了一定的影响。

赛题任务

本次赛题将提供手写体图像切片数据集,数据集从真实业务场景中,经过切片脱敏得到,参赛队伍通过识别技术,获得对应的识别结果。即:

输入:手写体图像切片数据集

输出:对应的识别结果

ocr 识别结果 NLP纠正_paddlepaddle

代码说明

本项目是PaddlePaddle 2.0动态图实现的CRNN文字识别模型,可支持长短不一的图片输入。CRNN是一种端到端的识别模式,不需要通过分割图片即可完成图片中全部的文字识别。CRNN的结构主要是CNN+RNN+CTC,它们分别的作用是,使用深度CNN,对输入图像提取特征,得到特征图。使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布。使用 CTC Loss,把从循环层获取的一系列标签分布转换成最终的标签序列。

ocr 识别结果 NLP纠正_paddlepaddle_02

CRNN的结构如下,一张高为32的图片,宽度随意,一张图片经过多层卷积之后,高度就变成了1,经过paddle.squeeze()就去掉了高度,也就说从输入的图片BCHW经过卷积之后就成了BCW。然后把特征顺序从BCW改为WBC输入到RNN中,经过两次的RNN之后,模型的最终输入为(W, B, Class_num)。这恰好是CTCLoss函数的输入。

ocr 识别结果 NLP纠正_paddle_03

使用环境:

  • PaddlePaddle 2.0.1
  • Python 3.7
!\rm -rf __MACOSX/ 测试集/ 训练集/ dataset/
!unzip 2021A_T1_Task1_数据集含训练集和测试集.zip > out.log

步骤1:生成额外的数据集

这一步可以跳过,如果想要获取更好的精度,可以自己添加。

import os
import time
from random import choice, randint, randrange

from PIL import Image, ImageDraw, ImageFont

# 验证码图片文字的字符集
characters = '拾伍佰正仟万捌贰整陆玖圆叁零角分肆柒亿壹元'

def selectedCharacters(length):
    result = ''.join(choice(characters) for _ in range(length))
    return result


def getColor():
    r = randint(0, 100)
    g = randint(0, 100)
    b = randint(0, 100)
    return (r, g, b)


def main(size=(200, 100), characterNumber=6, bgcolor=(255, 255, 255)):
    # 创建空白图像和绘图对象
    imageTemp = Image.new('RGB', size, bgcolor)
    draw01 = ImageDraw.Draw(imageTemp)

    # 生成并计算随机字符串的宽度和高度
    text = selectedCharacters(characterNumber)
    print(text)
    font = ImageFont.truetype(font_path, 40)
    width, height = draw01.textsize(text, font)
    if width + 2 * characterNumber > size[0] or height > size[1]:
        print('尺寸不合法')
        return

    # 绘制随机字符串中的字符
    startX = 0
    widthEachCharater = width // characterNumber
    for i in range(characterNumber):
        startX += widthEachCharater + 1
        position = (startX, (size[1] - height) // 2)
        draw01.text(xy=position, text=text[i], font=font, fill=getColor())

    # 对像素位置进行微调,实现扭曲的效果
    imageFinal = Image.new('RGB', size, bgcolor)
    pixelsFinal = imageFinal.load()
    pixelsTemp = imageTemp.load()
    for y in range(size[1]):
        offset = randint(-1, 0)
        for x in range(size[0]):
            newx = x + offset
            if newx >= size[0]:
                newx = size[0] - 1
            elif newx < 0:
                newx = 0
            pixelsFinal[newx, y] = pixelsTemp[x, y]

    # 绘制随机颜色随机位置的干扰像素
    draw02 = ImageDraw.Draw(imageFinal)
    for i in range(int(size[0] * size[1] * 0.07)):
        draw02.point((randrange(0, size[0]), randrange(0, size[1])), fill=getColor())

    # 保存并显示图片
    imageFinal.save("dataset/images/%d_%s.jpg" % (round(time.time() * 1000), text))


def create_list():
    images = os.listdir('dataset/images')
    f_train = open('dataset/train_list.txt', 'w', encoding='utf-8')
    f_test = open('dataset/test_list.txt', 'w', encoding='utf-8')
    for i, image in enumerate(images):
        image_path = os.path.join('dataset/images', image).replace('\\', '/')
        label = image.split('.')[0].split('_')[1]
        if i % 100 == 0:
            f_test.write('%s\t%s\n' % (image_path, label))
        else:
            f_train.write('%s\t%s\n' % (image_path, label))


def creat_vocabulary():
    # 生成词汇表
    with open('dataset/train_list.txt', 'r', encoding='utf-8') as f:
        lines = f.readlines()
    v = set()
    for line in lines:
        _, label = line.replace('\n', '').split('\t')
        for c in label:
            v.add(c)

    vocabulary_path = 'dataset/vocabulary.txt'
    with open(vocabulary_path, 'w', encoding='utf-8') as f:
        f.write(' \n')
        for c in v:
            f.write(c + '\n')


if __name__ == '__main__':
    if not os.path.exists('dataset/images'):
        os.makedirs('dataset/images')

    # font_path = "font/鸿雷板书简体-Regular.ttf"
    # for _ in range(1):
    #    main((300, 48), 8, (251, 253, 241))
    # for _ in range(1):
    #     main((200, 48), 6, (209, 219, 189))
    # for _ in range(1):
    #     main((180, 48), 4, (209, 219, 189))
    # for _ in range(1):
    #     main((150, 48), 2, (162, 198, 182))
    # create_list()
    # creat_vocabulary()

步骤2:安装依赖环境

!pip install Levenshtein
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting Levenshtein
[?25l  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/42/38/5098b349b448509a11f84dd65e9a24bf2f6a01cb32ef120eaa18d045e1ce/Levenshtein-0.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (110kB)
[K     |████████████████████████████████| 112kB 9.3MB/s eta 0:00:01
[?25hCollecting rapidfuzz<1.9,>=1.8.2 (from Levenshtein)
[?25l  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/df/09/f58026faf771cb91db3880bfcc22dc77df4b3a215f07f6d1250a9a42fcb1/rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6MB)
[K     |████████████████████████████████| 1.6MB 48.5MB/s eta 0:00:01
[?25hInstalling collected packages: rapidfuzz, Levenshtein
Successfully installed Levenshtein-0.16.0 rapidfuzz-1.8.2

步骤3:读取数据集

import glob, codecs, json, os
import numpy as np

date_jpgs = glob.glob('./训练集/date/images/*.jpg')
amount_jpgs = glob.glob('./训练集/amount/images/*.jpg')

lines = codecs.open('./训练集/date/gt.json', encoding='utf-8').readlines()
lines = ''.join(lines)
date_gt = json.loads(lines.replace(',\n}', '}'))

lines = codecs.open('./训练集/amount/gt.json', encoding='utf-8').readlines()
lines = ''.join(lines)
amount_gt = json.loads(lines.replace(',\n}', '}'))
data_path = date_jpgs + amount_jpgs
date_gt.update(amount_gt)

s = ''
for x in date_gt:
    s += date_gt[x]

char_list = list(set(list(s)))
char_list = char_list

步骤4:构造训练集

!mkdir dataset
!mkdir dataset/images
!cp 训练集/date/images/*.jpg dataset/images
!cp 训练集/amount/images/*.jpg dataset/images
with open('dataset/vocabulary.txt', 'w') as up:
    for x in char_list:
        up.write(x + '\n')

data_path = glob.glob('dataset/images/*.jpg')
np.random.shuffle(data_path)
with open('dataset/train_list.txt', 'w') as up:
    for x in data_path[:-100]:
        up.write(f'{x}\t{date_gt[os.path.basename(x)]}\n')

with open('dataset/test_list.txt', 'w') as up:
    for x in data_path[-100:]:
        up.write(f'{x}\t{date_gt[os.path.basename(x)]}\n')

执行上面程序生成的图片会放在dataset/images目录下,生成的训练数据列表和测试数据列表分别放在dataset/train_list.txtdataset/test_list.txt,最后还有个数据词汇表dataset/vocabulary.txt

数据列表的格式如下,左边是图片的路径,右边是文字标签。

dataset/images/1617420021182_c1dw.jpg	c1dw
dataset/images/1617420021204_uvht.jpg	uvht
dataset/images/1617420021227_hb30.jpg	hb30
dataset/images/1617420021266_4nkx.jpg	4nkx
dataset/images/1617420021296_80nv.jpg	80nv

以下是数据集词汇表的格式,一行一个字符,第一行是空格,不代表任何字符。

f
s
2
7
3
n
d
w

训练自定义数据,参考上面的格式即可。

步骤5:训练模型

不管你是自定义数据集还是使用上面生成的数据,只要文件路径正确,即可开始进行训练。该训练支持长度不一的图片输入,但是每一个batch的数据的数据长度还是要一样的,这种情况下,笔者就用了collate_fn()函数,该函数可以把数据最长的找出来,然后把其他的数据补0,加到相同的长度。同时该函数还要输出它其中每条数据标签的实际长度,因为损失函数需要输入标签的实际长度。

  • 在训练过程中,程序会使用VisualDL记录训练结果
import paddle
import numpy as np
import os
from datetime import datetime
from utils.model import Model
from utils.decoder import ctc_greedy_decoder, label_to_string, cer
from paddle.io import DataLoader
from utils.data import collate_fn
from utils.data import CustomDataset
from visualdl import LogWriter

# 训练数据列表路径
train_data_list_path = 'dataset/train_list.txt'
# 测试数据列表路径
test_data_list_path = 'dataset/test_list.txt'
# 词汇表路径
voc_path = 'dataset/vocabulary.txt'
# 模型保存的路径
save_model = 'models/'
# 每一批数据大小
batch_size = 32
# 预训练模型路径
pretrained_model = None
# 训练轮数
num_epoch = 100
# 初始学习率大小
learning_rate = 1e-3
# 日志记录噐
writer = LogWriter(logdir='log')


def train():
    # 获取训练数据
    train_dataset = CustomDataset(train_data_list_path, voc_path, img_height=32)
    train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, collate_fn=collate_fn, shuffle=True)
    # 获取测试数据
    test_dataset = CustomDataset(test_data_list_path, voc_path, img_height=32, is_data_enhance=False)
    test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn)
    # 获取模型
    model = Model(train_dataset.vocabulary, image_height=train_dataset.img_height, channel=1)
    paddle.summary(model, input_size=(batch_size, 1, train_dataset.img_height, 500))
    # 设置优化方法
    boundaries = [30, 100, 200]
    lr = [0.1 ** l * learning_rate for l in range(len(boundaries) + 1)]
    scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=boundaries, values=lr, verbose=False)
    optimizer = paddle.optimizer.Adam(parameters=model.parameters(),
                                      learning_rate=scheduler,
                                      weight_decay=paddle.regularizer.L2Decay(1e-4))
    # 获取损失函数
    ctc_loss = paddle.nn.CTCLoss()
    # 加载预训练模型
    if pretrained_model is not None:
        model.set_state_dict(paddle.load(os.path.join(pretrained_model, 'model.pdparams')))
        optimizer.set_state_dict(paddle.load(os.path.join(pretrained_model, 'optimizer.pdopt')))

    train_step = 0
    test_step = 0
    # 开始训练
    for epoch in range(num_epoch):
        for batch_id, (inputs, labels, input_lengths, label_lengths) in enumerate(train_loader()):
            out = model(inputs)
            # 计算损失
            input_lengths = paddle.full(shape=[batch_size], fill_value=out.shape[0], dtype='int64')
            loss = ctc_loss(out, labels, input_lengths, label_lengths)
            loss.backward()
            optimizer.step()
            optimizer.clear_grad()
            # 多卡训练只使用一个进程打印
            if batch_id == 0:
                print('[%s] Train epoch %d, batch %d, loss: %f' % (datetime.now(), epoch, batch_id, loss))
                writer.add_scalar('Train loss', loss, train_step)
                train_step += 1
        # 执行评估
        if epoch % 10 == 0:
            model.eval()
            cer = evaluate(model, test_loader, train_dataset.vocabulary)
            print('[%s] Test epoch %d, cer: %f' % (datetime.now(), epoch, cer))
            writer.add_scalar('Test cer', cer, test_step)
            test_step += 1
            model.train()
        # 记录学习率
        writer.add_scalar('Learning rate', scheduler.last_lr, epoch)
        scheduler.step()
        # 保存模型
        paddle.save(model.state_dict(), os.path.join(save_model, 'model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(save_model, 'optimizer.pdopt'))


# 评估模型
def evaluate(model, test_loader, vocabulary):
    cer_result = []
    for batch_id, (inputs, labels, _, _) in enumerate(test_loader()):
        # 执行识别
        outs = model(inputs)
        outs = paddle.transpose(outs, perm=[1, 0, 2])
        outs = paddle.nn.functional.softmax(outs)
        # 解码获取识别结果
        labelss = []
        out_strings = []
        for out in outs:
            out_string = ctc_greedy_decoder(out, vocabulary)
            out_strings.append(out_string)
        for i, label in enumerate(labels):
            label_str = label_to_string(label, vocabulary)
            labelss.append(label_str)
        for out_string, label in zip(*(out_strings, labelss)):
            # 计算字错率
            c = cer(out_string, label) / float(len(label))
            cer_result.append(c)
    cer_result = float(np.mean(cer_result))
    return cer_result


if __name__ == '__main__':
    train()
W1113 10:05:57.275971   126 device_context.cc:362] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W1113 10:05:57.280805   126 device_context.cc:372] device: 0, cuDNN Version: 7.6.
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/numpy/core/fromnumeric.py:87: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
  return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:648: UserWarning: When training, we now always track global mean and variance.
  "When training, we now always track global mean and variance.")


-------------------------------------------------------------------------------------------------------
 Layer (type)       Input Shape                        Output Shape                       Param #    
=======================================================================================================
   Conv2D-1      [[32, 1, 32, 500]]                 [32, 64, 32, 500]                       640      
    ReLU-1      [[32, 64, 32, 500]]                 [32, 64, 32, 500]                        0       
  MaxPool2D-1   [[32, 64, 32, 500]]                 [32, 64, 16, 250]                        0       
   Conv2D-2     [[32, 64, 16, 250]]                 [32, 128, 16, 250]                    73,856     
    ReLU-2      [[32, 128, 16, 250]]                [32, 128, 16, 250]                       0       
  MaxPool2D-2   [[32, 128, 16, 250]]                [32, 128, 8, 125]                        0       
   Conv2D-3     [[32, 128, 8, 125]]                 [32, 256, 8, 125]                     295,168    
 BatchNorm2D-1  [[32, 256, 8, 125]]                 [32, 256, 8, 125]                      1,024     
    ReLU-3      [[32, 256, 8, 125]]                 [32, 256, 8, 125]                        0       
   Conv2D-4     [[32, 256, 8, 125]]                 [32, 256, 8, 125]                     590,080    
    ReLU-4      [[32, 256, 8, 125]]                 [32, 256, 8, 125]                        0       
  MaxPool2D-3   [[32, 256, 8, 125]]                 [32, 256, 4, 126]                        0       
   Conv2D-5     [[32, 256, 4, 126]]                 [32, 512, 4, 126]                    1,180,160   
 BatchNorm2D-2  [[32, 512, 4, 126]]                 [32, 512, 4, 126]                      2,048     
    ReLU-5      [[32, 512, 4, 126]]                 [32, 512, 4, 126]                        0       
   Conv2D-6     [[32, 512, 4, 126]]                 [32, 512, 4, 126]                    2,359,808   
    ReLU-6      [[32, 512, 4, 126]]                 [32, 512, 4, 126]                        0       
  MaxPool2D-4   [[32, 512, 4, 126]]                 [32, 512, 2, 127]                        0       
   Conv2D-7     [[32, 512, 2, 127]]                 [32, 512, 1, 126]                    1,049,088   
 BatchNorm2D-3  [[32, 512, 1, 126]]                 [32, 512, 1, 126]                      2,048     
    ReLU-7      [[32, 512, 1, 126]]                 [32, 512, 1, 126]                        0       
    LSTM-1        [[126, 32, 512]]   [[126, 32, 512], [[2, 126, 256], [2, 126, 256]]]    1,576,960   
   Linear-1        [[4032, 512]]                       [4032, 256]                        131,328    
    LSTM-2        [[126, 32, 256]]   [[126, 32, 512], [[2, 126, 256], [2, 126, 256]]]    1,052,672   
   Linear-2        [[4032, 512]]                        [4032, 21]                        10,773     
=======================================================================================================
Total params: 8,325,653
Trainable params: 8,320,533
Non-trainable params: 5,120
-------------------------------------------------------------------------------------------------------
Input size (MB): 1.95
Forward/backward pass size (MB): 65125.77
Params size (MB): 31.76
Estimated Total Size (MB): 65159.48
-------------------------------------------------------------------------------------------------------

[2021-11-13 10:06:02.529710] Train epoch 0, batch 0, loss: 108.196701


/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:238: UserWarning: The dtype of left and right variables are not the same, left dtype is VarType.FP32, but right dtype is VarType.INT64, the right dtype will convert to VarType.FP32
  format(lhs_dtype, rhs_dtype, lhs_dtype))


[2021-11-13 10:06:13.813138] Test epoch 0, cer: 1.000000
[2021-11-13 10:06:15.351135] Train epoch 1, batch 0, loss: 2.000788
[2021-11-13 10:06:27.331733] Train epoch 2, batch 0, loss: 1.726695
[2021-11-13 10:06:39.256719] Train epoch 3, batch 0, loss: 1.632126
[2021-11-13 10:06:51.053223] Train epoch 4, batch 0, loss: 1.358111
[2021-11-13 10:07:03.132675] Train epoch 5, batch 0, loss: 1.098709
[2021-11-13 10:07:15.020661] Train epoch 6, batch 0, loss: 1.033297
[2021-11-13 10:07:27.655285] Train epoch 7, batch 0, loss: 0.818024
[2021-11-13 10:07:39.855014] Train epoch 8, batch 0, loss: 1.124583
[2021-11-13 10:07:51.754464] Train epoch 9, batch 0, loss: 0.838948
[2021-11-13 10:08:03.818211] Train epoch 10, batch 0, loss: 0.918665
[2021-11-13 10:08:15.031882] Test epoch 10, cer: 0.556043
[2021-11-13 10:08:16.562726] Train epoch 11, batch 0, loss: 0.790987
[2021-11-13 10:08:28.534561] Train epoch 12, batch 0, loss: 1.167500
[2021-11-13 10:08:40.532282] Train epoch 13, batch 0, loss: 1.007731
[2021-11-13 10:08:52.680322] Train epoch 14, batch 0, loss: 1.303900
[2021-11-13 10:09:04.828809] Train epoch 15, batch 0, loss: 0.640286
[2021-11-13 10:09:16.944250] Train epoch 16, batch 0, loss: 0.926623
[2021-11-13 10:09:28.803841] Train epoch 17, batch 0, loss: 0.776034
[2021-11-13 10:09:40.710312] Train epoch 18, batch 0, loss: 0.964071
[2021-11-13 10:09:52.649561] Train epoch 19, batch 0, loss: 0.839559
[2021-11-13 10:10:04.644601] Train epoch 20, batch 0, loss: 0.399815
[2021-11-13 10:10:16.046862] Test epoch 20, cer: 0.429555
[2021-11-13 10:10:17.566501] Train epoch 21, batch 0, loss: 0.668917
[2021-11-13 10:10:29.331909] Train epoch 22, batch 0, loss: 0.509072
[2021-11-13 10:10:41.186712] Train epoch 23, batch 0, loss: 0.944950
[2021-11-13 10:10:53.134320] Train epoch 24, batch 0, loss: 0.054262
[2021-11-13 10:11:05.008267] Train epoch 25, batch 0, loss: 0.584100
[2021-11-13 10:11:17.015496] Train epoch 26, batch 0, loss: 0.424152
[2021-11-13 10:11:29.066417] Train epoch 27, batch 0, loss: 0.402954

步骤6:模型预测

训练结束之后,使用保存的模型进行预测。通过修改image_path指定需要预测的图片路径,解码方法,笔者使用了一个最简单的贪心策略。

import os
from PIL import Image
import numpy as np
import paddle

from utils.model import Model
from utils.data import process
from utils.decoder import ctc_greedy_decoder


with open('dataset/vocabulary.txt', 'r', encoding='utf-8') as f:
    vocabulary = f.readlines()

vocabulary = [v.replace('\n', '') for v in vocabulary]

save_model = 'models/'
model = Model(vocabulary, image_height=32)
model.set_state_dict(paddle.load(os.path.join(save_model, 'model.pdparams')))
model.eval()


def infer(path):
    data = process(path, img_height=32)
    data = data[np.newaxis, :]
    data = paddle.to_tensor(data, dtype='float32')
    # 执行识别
    out = model(data)
    out = paddle.transpose(out, perm=[1, 0, 2])
    out = paddle.nn.functional.softmax(out)[0]
    # 解码获取识别结果
    out_string = ctc_greedy_decoder(out, vocabulary)

    # print('预测结果:%s' % out_string)
    return out_string

if __name__ == '__main__':
    image_path = 'dataset/images/0_8bb194207a248698017a854d62c96104.jpg'
    display(Image.open(image_path))
    print(infer(image_path))

ocr 识别结果 NLP纠正_ocr 识别结果 NLP纠正_04

贰零贰零贰壹
from tqdm import tqdm, tqdm_notebook

result_dict = {}
for path in tqdm(glob.glob('./测试集/date/images/*.jpg')):
    text = infer(path)
    result_dict[os.path.basename(path)] = {
        'result': text,
        'confidence': 0.9
    }

for path in tqdm(glob.glob('./测试集/amount/images/*.jpg')):
    text = infer(path)
    result_dict[os.path.basename(path)] = {
        'result': text,
        'confidence': 0.9
    }
100%|██████████| 1000/1000 [00:06<00:00, 146.28it/s]
100%|██████████| 1000/1000 [00:08<00:00, 118.13it/s]
with open('answer.json', 'w', encoding='utf-8') as up:
    json.dump(result_dict, up, ensure_ascii=False, indent=4)

!zip answer.json.zip answer.json
adding: answer.json (deflated 85%)

)