1、Tab补全

相较于标准python命令行,Ipython的提升之一就是tab补全功能。当在命令行输入表达式时,按下Tab键即可为任意变量(对象、函数等)搜索命名空间,与当前已输入的字符进行匹配:

 

python 和pm2搭配_数据库

 

python 和pm2搭配_python 和pm2搭配_02

 

python 和pm2搭配_python_03

Tab补全 在其他很多上下文场景中也有用。当输入任意路径时,按下Tab键将补全你的计算机文件系统中匹配你输入内容的值:

python 和pm2搭配_数据库_04

2、内省

在一个变量名的前后使用问号(?)可以显示一些关于该对象的重要信息:

python 和pm2搭配_数据库_05

比如我们想知道print函数的用法,就可以这样操作:

python 和pm2搭配_开发工具_06

 

 假设有这么一个函数:


def  add_numbers(a,b):


  """


  Add two numbers together


  Returns


  -------


  the_sum:type of arguments


  """


  return a+b


 


使用?来显示文档字符串:


python 和pm2搭配_开发工具_07

使用双问号甚至可以显示函数的源代码:

python 和pm2搭配_开发工具_08

3、%run命令

可以在Ipython会话中使用%run命令运行任意的python程序文件,如:

python 和pm2搭配_数据分析_09

4、中断运行中的代码

在任意代码运行时按下Ctrl-C,无论脚本运行到哪一步,都会引起keyboardInterrupt。除了一些特殊情况,这导致所有的python程序立即停止运行。

5、Ipython的常见快捷键

- Ctrl-P 或上箭头键   后向搜索命令历史中以当前输入的文本开头的命令
- Ctrl-N 或下箭头键   前向搜索命令历史中以当前输入的文本开头的命令
- Ctrl-R          按行读取的反向历史搜索(部分匹配)
- Ctrl-Shift-v      从剪贴板粘贴文本
- Ctrl-C        中止当前正在执行的代码
- Ctrl-A        将光标移动到行首
- Ctrl-E        将光标移动到行尾
- Ctrl-K        删除从光标开始至行尾的文本
- Ctrl-U        清除当前行的所有文本译注12
- Ctrl-F        将光标向前移动一个字符
- Ctrl-b        将光标向后移动一个字符
- Ctrl-L        清屏

小爬再来说说Pandas,它所包含的数据结构和数据处理工具的设计使得在python中进行数据清洗和分析异常方便和快捷。

我们一般这样导入Pandas:

import pandas as pd

pandas中有两个非常有名的类Series Dataframe,如果只想导入这两个类,可以这样:

from pandas import Series,Dataframe


1、Series

Series是一维数组对象,它包含一个值序列,并且含数据标签,称为索引(Index):

python 和pm2搭配_python_10

我们可以通过values属性和Index属性分别获得Series对象的值和索引:

python 和pm2搭配_数据库_11

我们可以基于条件查找特定值:

python 和pm2搭配_数据分析_12

它也可以逐元素进行简单运算:

python 和pm2搭配_数据库_13

我们还可以这样作逻辑判断:

python 和pm2搭配_数据分析_14

我们甚至可以根据python字典快速生成一个Series对象:

python 和pm2搭配_python_15

 

 我们还可以用一个列表对象当成参数传给series对象当作索引(元素个数必须一致)

Series的索引可以通过按位置赋值的方式进行改变:

python 和pm2搭配_开发工具_16

 

2、Dataframe

Dataframe表示的是矩阵的数据表,它包含已排序的列集合,每一列可以是不同的值类型,这跟我们熟悉的excel工作表太像了,所以很多原本用Excel来作的数据分析就可以使用Dataframe来处理,毕竟它的运算速度堪比数据库sql语句,比一般的excel计算快不少。

我们有多种方法去创建DataFrame,最常用的方法是利用包含等长度列表或Numpy数组的字典来生成DataFrame,产生的DataFrame会自动为Series分配索引,并且列会按照排序的顺序排列:

python 和pm2搭配_python_17

对于大型DataFrame,head方法将会只选出头部的五行:

python 和pm2搭配_数据分析_18

 


 如果你指定了列的顺序,DataFrame的列会按照指定顺序排列:


python 和pm2搭配_python_19

我们可以指定DataFrame的索引:

python 和pm2搭配_python_20

DataFrame中的一列,可以将字典型标记或属性那样检索为Series:

python 和pm2搭配_python 和pm2搭配_21

  

python 和pm2搭配_python 和pm2搭配_22

我们也可以用df[字段名]表示法:

python 和pm2搭配_数据分析_23

  

python 和pm2搭配_python_24

del方法可以用于移除之前新建的列:

python 和pm2搭配_python 和pm2搭配_25

mark,后续会再记录更多的pandas使用心得,并应用到实际的项目中!