双MIPI摄像头图像系统设计



双相机图像拼接 opencv_IP

介绍

FPGA 的一大优势是我们可以实现并行图像处理数据流。虽然任务比较重,但是我们不需要昂贵的 FPGA,我们可以使用成本低廉范围中的一个,例如 Spartan 7 或 Artix 7。对于这个项目,将展示如何设计一个简单的图像处理应用程序,该应用程序平行处理两个摄像头。

本项目主要使用 Digilent PCAM 扩展板。PCAM 扩展板为最多四个 PCAMS 提供接口。所以只需要有FMC接口的开发板都可以完成本项目移植。



双相机图像拼接 opencv_fpga开发_02

Vivado

为了让系统快速启动和运行,我们将从赛灵思的一个示例项目开始设计。要打开参考项目,我们需要首先创建一个针对自己开发板上 FPGA 的项目。



双相机图像拼接 opencv_#include_03

打开项目后,创建一个新的BD。



双相机图像拼接 opencv_#define_04

打开BD后,在BD中添加一个 MIPI CSI2 IP。



双相机图像拼接 opencv_#include_05

要打开参考设计,右键单击 CSI2 IP并选择打开 IP 示例设计。



双相机图像拼接 opencv_#define_06

我们将使用这个参考项目。首先要做的是移除 DSI 输出路径。这将为我们的图像处理平台释放 FPGA 中的逻辑资源。

下一步是添加以下元素以创建第二条图像处理通道。

  • CSI2 IP Block
  • Register Slices & concatenation
  • Sensor Demosaic
  • VDMA
  • AXI Switch

完成的设计应如下所示:



双相机图像拼接 opencv_fpga开发_07

除了 CSI2 IP 中的设置外,第二个图像处理通道与第一个相同。



双相机图像拼接 opencv_fpga开发_08

原始 CSI2 IP 设置



双相机图像拼接 opencv_fpga开发_09

添加的 CSI2 IP 中的设置



双相机图像拼接 opencv_#define_10

VDMA 内存设置



双相机图像拼接 opencv_fpga开发_11

Sensor Demosaic设置



双相机图像拼接 opencv_IP_12

AXI4 Stream Switch



双相机图像拼接 opencv_#include_13

时钟有不同的上行和下行时钟



双相机图像拼接 opencv_#include_14

双相机图像拼接 opencv_#include_15

完成BD设计接下来就是针对硬件进行管脚约束。

一旦完成,我们就可以生成和构建项目并导出 XSA 用于软件开发。

该设备的利用率如下:



双相机图像拼接 opencv_fpga开发_16

软件开发

导出 XSA 后,我们可以创建一个新的 Vitis 项目,其中包含 hello world 应用程序。

从 hello world 应用程序 BSP 设置中,我们可以导入 MIPI CSI2 示例项目。



双相机图像拼接 opencv_fpga开发_17

我们需要对这个项目进行一些更改。

首先是通过 IIC 与传感器通信并设置传感器。板上的 CSI2 Sensor与FPGA 的 I2C 并没有直接连接。通过一个I2C BUFFER,与四个sensor连接,因为sensor的地址是一样的。

这可以在 fucntion_prototpye.c 中提供的传感器配置函数中进行更改。

所以我们在配置运行之前需要选择多路复用器。

extern int SensorPreConfig(int pcam5c_mode) {


  u32 Index, MaxIndex, MaxIndex1, MaxIndex2;
  int Status;
  SensorIicAddr = SENSOR_ADDRESS;

  u8 SP701mux_addr = 0x75;
    u8 SP701mux_ch = 0x40;

    u8 PCAM_FMC_addr = 0x70;
    u8 PCAM_FMC_ch = 0x01;


    Status = XIic_SetAddress(&IicAdapter, XII_ADDR_TO_SEND_TYPE, SP701mux_addr);
    if (Status != XST_SUCCESS) {
   return XST_FAILURE;
    }

    WriteBuffer[0] = SP701mux_ch;
    Status = AdapterWriteData(1);
   if (Status != XST_SUCCESS) {
     printf("sp701 mux failed\n\r");
     return XST_FAILURE;
   }

    Status = XIic_SetAddress(&IicAdapter, XII_ADDR_TO_SEND_TYPE, PCAM_FMC_addr);
    if (Status != XST_SUCCESS) {
   return XST_FAILURE;
    }

    WriteBuffer[0] = PCAM_FMC_ch;
    Status = AdapterWriteData(1);
   if (Status != XST_SUCCESS) {
     printf("pcam mux failed\n\r");
     return XST_FAILURE;
   }



  Status = XIic_SetAddress(&IicAdapter, XII_ADDR_TO_SEND_TYPE, SensorIicAddr);
  if (Status != XST_SUCCESS) {
 return XST_FAILURE;
  }


  WritetoReg(0x31, 0x03, 0x11);
  WritetoReg(0x30, 0x08, 0x82);

  Sensor_Delay();


  MaxIndex = length_sensor_pre;
  for(Index = 0; Index < (MaxIndex - 0); Index++)
  {
    WriteBuffer[0] = sensor_pre[Index].Address >> 8;
 WriteBuffer[1] = sensor_pre[Index].Address;
 WriteBuffer[2] = sensor_pre[Index].Data;

    Sensor_Delay();

 Status = AdapterWriteData(3);
 if (Status != XST_SUCCESS) {
   return XST_FAILURE;
 }
  }


  WritetoReg(0x30, 0x08, 0x42);


  MaxIndex1 = length_pcam5c_mode1;

  for(Index = 0; Index < (MaxIndex1 - 0); Index++)
  {
    WriteBuffer[0] = pcam5c_mode1[Index].Address >> 8;
 WriteBuffer[1] = pcam5c_mode1[Index].Address;
 WriteBuffer[2] = pcam5c_mode1[Index].Data;

    Sensor_Delay();

 Status = AdapterWriteData(3);
 if (Status != XST_SUCCESS) {
   return XST_FAILURE;
 }
  }


  WritetoReg(0x30, 0x08, 0x02);
  Sensor_Delay();
  WritetoReg(0x30, 0x08, 0x42);


  MaxIndex2 = length_sensor_list;

  for(Index = 0; Index < (MaxIndex2 - 0); Index++)
  {
    WriteBuffer[0] = sensor_list[Index].Address >> 8;
 WriteBuffer[1] = sensor_list[Index].Address;
 WriteBuffer[2] = sensor_list[Index].Data;

    Sensor_Delay();

 Status = AdapterWriteData(3);
   if (Status != XST_SUCCESS) {
  return XST_FAILURE;
   }
  }


  if(Status != XST_SUCCESS) {
    xil_printf("Error: in Writing entry status = %x \r\n", Status);
    return XST_FAILURE;
  }

  return XST_SUCCESS;

}

由于我们添加了第二个 Demosaic,我们还需要更新其配置。

int demosaic()
{
  demosaic_Config = XV_demosaic_LookupConfig(DEMOSAIC_DEVICE_ID);
  XV_demosaic_CfgInitialize(&InstancePtr, demosaic_Config,
                             demosaic_Config->BaseAddress);
  XV_demosaic_Set_HwReg_width(&InstancePtr, 1920);
  XV_demosaic_Set_HwReg_height(&InstancePtr, 1080);
  XV_demosaic_Set_HwReg_bayer_phase(&InstancePtr, 0x3);
  XV_demosaic_EnableAutoRestart(&InstancePtr);
  XV_demosaic_Start(&InstancePtr);

  demosaic_Config1 = XV_demosaic_LookupConfig(DEMOSAIC_DEVICE1_ID);
  XV_demosaic_CfgInitialize(&InstancePtr1, demosaic_Config1,
                             demosaic_Config1->BaseAddress);
  XV_demosaic_Set_HwReg_width(&InstancePtr1, 1920);
  XV_demosaic_Set_HwReg_height(&InstancePtr1, 1080);
  XV_demosaic_Set_HwReg_bayer_phase(&InstancePtr1, 0x3);
  XV_demosaic_EnableAutoRestart(&InstancePtr1);
  XV_demosaic_Start(&InstancePtr1);
  return XST_SUCCESS;

}

最后阶段是设置第二个 DMA,这里必须注意 DDR3地址管理以确保帧不会相互重叠。

int vdma_hdmi() {

  InitVprocSs_CSC(1);

  ResetVDMA();

  RunVDMA(&AxiVdma, XPAR_AXI_VDMA_0_DEVICE_ID, HORIZONTAL_RESOLUTION, \
    VERTICAL_RESOLUTION, srcBuffer, FRAME_COUNTER, 0);

  RunVDMA(&AxiVdma1, XPAR_AXI_VDMA_1_DEVICE_ID, HORIZONTAL_RESOLUTION, \
    VERTICAL_RESOLUTION, srcBuffer1, FRAME_COUNTER, 0);

  return XST_SUCCESS;

}

我们还需要注释掉 DSI 和TPG等函数使用的任何代码。

主代码也需要更新,以便在串口命令下控制 AXI Switch。

/******************************************************************************
* Copyright (C) 2018 - 2022 Xilinx, Inc.  All rights reserved.
* SPDX-License-Identifier: MIT
*******************************************************************************/

/*****************************************************************************/
/**
*
* @file xmipi_sp701_example.c
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver   Who    Date     Changes
* ----- ------ -------- --------------------------------------------------
* X.XX  XX     YY/MM/DD
* 1.00  RHe    19/09/20 Initial release.
* </pre>
*
******************************************************************************/
/***************************** Include Files *********************************/

#include "xparameters.h"
#include "xiic.h"
#include "xil_exception.h"
#include "function_prototype.h"
#include "pcam_5C_cfgs.h"
#include "xstatus.h"
#include "sleep.h"
#include "xiic_l.h"
#include "xil_io.h"
#include "xil_types.h"
//#include "xv_tpg.h"
#include "xil_cache.h"
#include "stdio.h"
#include "xaxis_switch.h"



/************************** Constant Definitions *****************************/


#define PAGE_SIZE   16
#define XAXIS_SWITCH_DEVICE_ID  XPAR_AXIS_SWITCH_0_DEVICE_ID

#define IIC_BASE_ADDRESS XPAR_IIC_2_BASEADDR

#define EEPROM_TEST_START_ADDRESS 0x80

#define IIC_SWITCH_ADDRESS 0x74
#define IIC_ADV7511_ADDRESS 0x39
//XV_tpg_Config  *tpg1_Config;XV_tpg_Config  *tpg1_Config;
//XV_tpg    tpg1;
//XV_tpg    tpg1;
typedef u8 AddressType;

typedef struct {
 u8 addr;
 u8 data;
 u8 init;
} HDMI_REG;

#define NUMBER_OF_HDMI_REGS  16
HDMI_REG hdmi_iic[NUMBER_OF_HDMI_REGS] = {
 {0x41, 0x00, 0x10},
 {0x98, 0x00, 0x03},
 {0x9A, 0x00, 0xE0},
 {0x9C, 0x00, 0x30},
 {0x9D, 0x00, 0x61},
 {0xA2, 0x00, 0xA4},
 {0xA3, 0x00, 0xA4},
 {0xE0, 0x00, 0xD0},
 {0xF9, 0x00, 0x00},
 {0x18, 0x00, 0xE7},
    {0x55, 0x00, 0x00},
    {0x56, 0x00, 0x28},
    {0xD6, 0x00, 0xC0},
    {0xAF, 0x00, 0x4},
 {0xF9, 0x00, 0x00}
};

u8 EepromIicAddr;  /* Variable for storing Eeprom IIC address */

int IicLowLevelDynEeprom();

u8 EepromReadByte(AddressType Address, u8 *BufferPtr, u8 ByteCount);
u8 EepromWriteByte(AddressType Address, u8 *BufferPtr, u8 ByteCount);



/****************i************ Type Definitions *******************************/

typedef u8 AddressType;

/************************** Variable Definitions *****************************/

extern XIic IicFmc, IicAdapter ; /*  IIC device. */

//HDMI IIC
int IicLowLevelDynEeprom()
{
  u8 BytesRead;
  u32 StatusReg;
  u8 Index;
  int Status;
  u32 i;
  EepromIicAddr = IIC_SWITCH_ADDRESS;
  Status = XIic_DynInit(IIC_BASE_ADDRESS);
  if (Status != XST_SUCCESS) {
 return XST_FAILURE;
  }
  xil_printf("\r\nAfter XIic_DynInit\r\n");
  while (((StatusReg = XIic_ReadReg(IIC_BASE_ADDRESS,
    XIIC_SR_REG_OFFSET)) &
    (XIIC_SR_RX_FIFO_EMPTY_MASK |
    XIIC_SR_TX_FIFO_EMPTY_MASK |
    XIIC_SR_BUS_BUSY_MASK)) !=
    (XIIC_SR_RX_FIFO_EMPTY_MASK |
    XIIC_SR_TX_FIFO_EMPTY_MASK)) {

  }


  EepromIicAddr = IIC_ADV7511_ADDRESS;
  for ( Index = 0; Index < NUMBER_OF_HDMI_REGS; Index++)
  {
    EepromWriteByte(hdmi_iic[Index].addr, &hdmi_iic[Index].init, 1);
  }

  for ( Index = 0; Index < NUMBER_OF_HDMI_REGS; Index++)
  {
    BytesRead = EepromReadByte(hdmi_iic[Index].addr, &hdmi_iic[Index].data, 1);
    for(i=0;i<1000;i++) {}; // IIC delay
 if (BytesRead != 1) {
      return XST_FAILURE;
 }
  }


  return XST_SUCCESS;

}


/*****************************************************************************/
/**
* This function writes a buffer of bytes to the IIC serial EEPROM.
*
* @param BufferPtr contains the address of the data to write.
* @param ByteCount contains the number of bytes in the buffer to be
*  written. Note that this should not exceed the page size of the
*  EEPROM as noted by the constant PAGE_SIZE.
*
* @return The number of bytes written, a value less than that which was
*  specified as an input indicates an error.
*
* @note  one.
*
******************************************************************************/
u8 EepromWriteByte(AddressType Address, u8 *BufferPtr, u8 ByteCount)
{
  u8 SentByteCount;
  u8 WriteBuffer[sizeof(Address) + PAGE_SIZE];
  u8 Index;

  /*
   * A temporary write buffer must be used which contains both the address
   * and the data to be written, put the address in first based upon the
   * size of the address for the EEPROM
   */
  if (sizeof(AddressType) == 2) {
 WriteBuffer[0] = (u8) (Address >> 8);
 WriteBuffer[1] = (u8) (Address);
  } else if (sizeof(AddressType) == 1) {
 WriteBuffer[0] = (u8) (Address);
 EepromIicAddr |= (EEPROM_TEST_START_ADDRESS >> 8) & 0x7;
  }

  /*
   * Put the data in the write buffer following the address.
   */
  for (Index = 0; Index < ByteCount; Index++) {
 WriteBuffer[sizeof(Address) + Index] = BufferPtr[Index];
  }

  /*
   * Write a page of data at the specified address to the EEPROM.
   */
  SentByteCount = XIic_DynSend(IIC_BASE_ADDRESS, EepromIicAddr,
    WriteBuffer, sizeof(Address) + ByteCount,
    XIIC_STOP);

  /*
   * Return the number of bytes written to the EEPROM.
   */
  return SentByteCount - sizeof(Address);

}


/******************************************************************************
*
* This function reads a number of bytes from the IIC serial EEPROM into a
* specified buffer.
*
* @param BufferPtr contains the address of the data buffer to be filled.
* @param ByteCount contains the number of bytes in the buffer to be read.
*  This value is constrained by the page size of the device such
*  that up to 64K may be read in one call.
*
* @return The number of bytes read. A value less than the specified input
*  value indicates an error.
*
* @note  None.
*
******************************************************************************/
u8 EepromReadByte(AddressType Address, u8 *BufferPtr, u8 ByteCount)
{
  u8 ReceivedByteCount;
  u8 SentByteCount;
  u16 StatusReg;

  /*
   * Position the Read pointer to specific location in the EEPROM.
   */
  do {
 StatusReg = XIic_ReadReg(IIC_BASE_ADDRESS, XIIC_SR_REG_OFFSET);
    if (!(StatusReg & XIIC_SR_BUS_BUSY_MASK)) {
   SentByteCount = XIic_DynSend(IIC_BASE_ADDRESS, EepromIicAddr,
       (u8 *) &Address, sizeof(Address), XIIC_REPEATED_START);
    }

  } while (SentByteCount != sizeof(Address));
  /*
   * Receive the data.
   */
  ReceivedByteCount = XIic_DynRecv(IIC_BASE_ADDRESS, EepromIicAddr,
                                            BufferPtr, ByteCount);

  /*
   * Return the number of bytes received from the EEPROM.
   */

  return ReceivedByteCount;

}


/*****************************************************************************/
/**
 *
 * Main function to initialize interop system and read data from AR0330 sensor

 * @param  None.
 *
 * @return
 *   - XST_SUCCESS if MIPI Interop was successful.
 *   - XST_FAILURE if MIPI Interop failed.
 *
 * @note   None.
 *
 ******************************************************************************/
int main() {
  int Status;
  int pcam5c_mode = 1;
  int usr_entry ,prev_sel;
  int default_input;
  int dsi_hdmi_select = 0;

  Xil_ICacheDisable();
  Xil_DCacheDisable();
  XAxis_Switch AxisSwitch;
  XAxis_Switch_Config *ASWConfig;

  ASWConfig = XAxisScr_LookupConfig(XAXIS_SWITCH_DEVICE_ID);
  XAxisScr_CfgInitialize(&AxisSwitch, ASWConfig,ASWConfig->BaseAddress);
  XAxisScr_RegUpdateDisable(&AxisSwitch);
  XAxisScr_MiPortDisableAll(&AxisSwitch);
  XAxisScr_MiPortEnable(&AxisSwitch, 0, 0);
  XAxisScr_RegUpdateEnable(&AxisSwitch);

  xil_printf("\n\r******************************************************\n\r");
  xil_printf("\n\r**           SP701 Example Design            **");

  Status = IicLowLevelDynEeprom();
  if (Status != XST_SUCCESS) {
    xil_printf("ADV7511 IIC programming FAILED\r\n");
    return XST_FAILURE;
  }
  xil_printf("ADV7511 IIC programming PASSED\r\n");


  //Initialize FMC, Adapter and Sensor IIC
  Status = InitIIC();
  if (Status != XST_SUCCESS) {
 xil_printf("\n\r IIC initialization Failed \n\r");
 return XST_FAILURE;
  }
  xil_printf("IIC Initializtion Done \n\r");

  //Initialize FMC Interrupt System
  Status = SetupFmcInterruptSystem(&IicFmc);
  if (Status != XST_SUCCESS) {
    xil_printf("\n\rInterrupt System Initialization Failed \n\r");
    return XST_FAILURE;
  }
  xil_printf("FMC Interrupt System Initialization Done \n\r");

  //Set up IIC Interrupt Handlers
  SetupIICIntrHandlers();
  xil_printf("IIC Interrupt Handlers Setup Done \n\r");

  Status =  SetFmcIICAddress();
  if (Status != XST_SUCCESS) {
    xil_printf("\n\rFMC IIC Address Setup Failed \n\r");
 return XST_FAILURE;
  }
  xil_printf("Fmc IIC Address Set\n\r");

  //Initialize Adapter Interrupt System
  Status = SetupAdapterInterruptSystem(&IicAdapter);
  if (Status != XST_SUCCESS) {
    xil_printf("\n\rInterrupt System Initialization Failed \n\r");
    return XST_FAILURE;
  }
  xil_printf("Adapter Interrupt System Initialization Done \n\r");

  //Set Address of Adapter IIC
  Status =  SetAdapterIICAddress();
  if (Status != XST_SUCCESS) {
    xil_printf("\n\rAdapter IIC Address Setup Failed \n\r");
 return XST_FAILURE;
  }
  xil_printf("Adapter IIC Address Set\n\r");

  Status = InitializeCsiRxSs();
  if (Status != XST_SUCCESS) {
    xil_printf("CSI Rx Ss Init failed status = %x.\r\n", Status);
 return XST_FAILURE;
  }


  dsi_hdmi_select = 0;
  //using default_input var to compare same option selection
  default_input = 1;
  //SetupDSI();
  resetIp();
  EnableCSI();
  GPIOSelect(dsi_hdmi_select);

  Status = demosaic();
  if (Status != XST_SUCCESS) {
 xil_printf("\n\rDemosaic Failed \n\r");
 return XST_FAILURE;
  }

  CamReset();

  //Preconifgure Sensor
  Status = SensorPreConfig(pcam5c_mode);
  if (Status != XST_SUCCESS) {
 xil_printf("\n\rSensor PreConfiguration Failed \n\r");
 return XST_FAILURE;
  }
  xil_printf("\n\rSensor 1 is PreConfigured\n\r");
  WritetoReg(0x30, 0x08, 0x02);

  //Preconifgure Sensor
  Status = SensorPreConfig1(pcam5c_mode);
  if (Status != XST_SUCCESS) {
 xil_printf("\n\rSensor PreConfiguration Failed \n\r");
 return XST_FAILURE;
  }
  xil_printf("\n\rSensor 2 is PreConfigured\n\r");
  WritetoReg(0x30, 0x08, 0x02);


  Status = vdma_hdmi();
  if (Status != XST_SUCCESS) {
    xil_printf("\n\rVdma_hdmi Failed \n\r");
 return XST_FAILURE;
  }

  Status = vtpg_hdmi();
  if (Status != XST_SUCCESS) {
    xil_printf("\n\rVtpg Failed \n\r");
 return XST_FAILURE;
  }


  Sensor_Delay();
  xil_printf("\n\rPipeline Configuration Completed \n\r");

  while(1) {

    xil_printf("\r\nPlease Select Camera(1 or 2) + ENTER:");


    usr_entry = getchar();

   char b;
   scanf("%c", &b);// This will take ENTER key



 switch(usr_entry) {

   case '1':
    xil_printf("\n\rSwitching to Camera 1\n\r");
    XAxisScr_RegUpdateDisable(&AxisSwitch);
    XAxisScr_MiPortDisableAll(&AxisSwitch);
    XAxisScr_MiPortEnable(&AxisSwitch, 0, 0);
    XAxisScr_RegUpdateEnable(&AxisSwitch);
    break;

   case '2':
    xil_printf("\n\rSwitching to Camera 1\n\r");
    XAxisScr_RegUpdateDisable(&AxisSwitch);
    XAxisScr_MiPortDisableAll(&AxisSwitch);
    XAxisScr_MiPortEnable(&AxisSwitch, 0, 1);
    XAxisScr_RegUpdateEnable(&AxisSwitch);
    break;

   default:
    xil_printf("\n\rSelection is unavailable. Please try again\n\r");
    break;
 }

  }
  return XST_SUCCESS;

}

测试

我们可以在连接到 HDMI 输出时运行应用程序并在显示器上看到图像。

使用应用程序选择图像。



双相机图像拼接 opencv_双相机图像拼接 opencv_18

双相机图像拼接 opencv_#define_19

双相机图像拼接 opencv_fpga开发_20

双相机图像拼接 opencv_双相机图像拼接 opencv_21

总结

该项目展示了一个MIPI摄像头接入FPGA的简单、快捷的方式,同时可以学习一下软件的导入工程的方式,简单的基于MicroBlaze系统要学会自己写控制代码,也许这就是新一代“FPGA打工人”需要掌握的一项新技术吧~(doge~不是)



双相机图像拼接 opencv_IP_22