一、非结构化数据与结构化数据
一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值。内容一般分为两部分,非结构化的数据 和 结构化的数据。
- 非结构化数据:先有数据,再有结构。
- 结构化数据:先有结构、再有数据。
- 不同类型的数据,我们需要采用不同的方式来处理。
处理方式 | 非结构化数据 | 结构化数据 |
正则表达式 | 文本、电话号码、邮箱地址、HTML 文件 | XML 文件 |
XPath | HTML 文件 | XML 文件 |
CSS选择器 | HTML 文件 | XML 文件 |
JSON Path | JSON 文件 | |
转化成Python类型 | JSON 文件(json类)、XML 文件(xmltodict) |
二、了解正则表达式
爬虫一共四个主要步骤:
- 明确目标 (要知道你准备在哪个范围或者网站去搜索)
- 爬 (将所有的网站的内容全部爬下来)
- 取 (去掉对我们没用处的数据)
- 处理数据(按照我们想要的方式存储和使用)
在前面的学习中,我们掌握了“爬”数据方法,此时我们down下的数据是全部的网页,这些数据很庞大并且很混乱,大部分的东西使我们不关心的,因此我们需要将之按我们的需要过滤和匹配出来,这就涉及到爬虫的第三步:提取。
当前,对于文本的过滤或者规则的匹配,最强大的就是正则表达式,他同时适用于结构化与非结构化数据的提取,是Python爬虫世界里必不可少的神兵利器。
正则表达式,又称规则表达式,通常被用来检索、替换那些符合某个模式(规则)的文本。
正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个"规则字符串",这个"规则字符串"用来表达对字符串的一种过滤逻辑。
给定一个正则表达式和另一个字符串,我们可以达到如下的目的:
- 给定的字符串是否符合正则表达式的过滤逻辑("匹配");
- 通过正则表达式,从文本字符串中获取我们想要的特定部分("过滤")。
三、正则表达式匹配规则
? = {0,1} ; + = {1,+∞} ; * = {0,+∞}
定位: re.findall("(?<=xxxxx).*?(?=xxxxx)") ;其中xxx是前后限定的内容,.*?是取得的内容
四:Python 的 re 模块
在 Python 中,我们可以使用内置的 re 模块来使用正则表达式。
有一点需要特别注意的是,正则表达式使用 对特殊字符进行转义,所以如果我们要使用原始字符串,只需加一个 r 前缀,示例:
r'chuanzhiboke\t\.\tpython'
re 模块的一般使用步骤如下:
- 使用
compile()
函数将正则表达式的字符串形式编译为一个Pattern
对象 - 通过
Pattern
对象提供的一系列方法对文本进行匹配查找,获得匹配结果,一个 Match 对象。 - 最后使用
Match
对象提供的属性和方法获得信息,根据需要进行其他的操作
import re
# 将正则表达式编译成 Pattern 对象
pattern = re.compile(r'\d+')
接下来,我们就可以利用 pattern 的一系列方法对文本进行匹配查找了。
Pattern 对象的一些常用方法主要有:
- match 方法:从起始位置开始查找,一次匹配
- search 方法:从任何位置开始查找,一次匹配
- findall 方法:全部匹配,返回列表
- finditer 方法:全部匹配,返回迭代器
- split 方法:分割字符串,返回列表
- sub 方法:替换
(1)match 方法
match 方法用于查找字符串的头部(也可以指定起始位置),它是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果。它的一般使用形式如下:
match(string[, pos[, endpos]])
其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。因此,当你不指定 pos 和 endpos 时,match 方法默认匹配字符串的头部。
当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。
>>> import re
>>> pattern = re.compile(r'\d+') # 用于匹配至少一个数字
>>> m = pattern.match('one12twothree34four') # 查找头部,没有匹配
>>> print (m)
None
>>> m = pattern.match('one12twothree34four', 2, 10) # 从'e'的位置开始匹配,没有匹配
>>> print (m)
None
>>> m = pattern.match('one12twothree34four', 3, 10) # 从'1'的位置开始匹配,正好匹配
>>> print (m) # 返回一个 Match 对象
<_sre.SRE_Match object at 0x10a42aac0>
>>> m.group(0) # 可省略 0
'12'
>>> m.start(0) # 可省略 0
3
>>> m.end(0) # 可省略 0
5
>>> m.span(0) # 可省略 0
(3, 5)
在上面,当匹配成功时返回一个 Match 对象,其中:
- group([group1, ...]) 方法用于获得一个或多个分组匹配的字符串,当要获得整个匹配的子串时,可直接使用 group() 或 group(0);
- start([group]) 方法用于获取分组匹配的子串在整个字符串中的起始位置(子串第一个字符的索引),参数默认值为 0;
- end([group]) 方法用于获取分组匹配的子串在整个字符串中的结束位置(子串最后一个字符的索引+1),参数默认值为 0;
- span([group]) 方法返回 (start(group), end(group))。
再看看一个例子:
>>> import re
>>> pattern = re.compile(r'([a-z]+) ([a-z]+)', re.I) # re.I 表示忽略大小写
>>> m = pattern.match('Hello World Wide Web')
>>> print (m) # 匹配成功,返回一个 Match 对象
<_sre.SRE_Match object at 0x10bea83e8>
>>> m.group(0) # 返回匹配成功的整个子串
'Hello World'
>>> m.span(0) # 返回匹配成功的整个子串的索引
(0, 11)
>>> m.group(1) # 返回第一个分组匹配成功的子串
'Hello'
>>> m.span(1) # 返回第一个分组匹配成功的子串的索引
(0, 5)
>>> m.group(2) # 返回第二个分组匹配成功的子串
'World'
>>> m.span(2) # 返回第二个分组匹配成功的子串
(6, 11)
>>> m.groups() # 等价于 (m.group(1), m.group(2), ...)
('Hello', 'World')
>>> m.group(3) # 不存在第三个分组
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: no such group
(2)search 方法
search 方法用于查找字符串的任何位置,它也是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果,它的一般使用形式如下:
search(string[, pos[, endpos]])
其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。
当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。
让我们看看例子:
>>> import re
>>> pattern = re.compile('\d+')
>>> m = pattern.search('one12twothree34four') # 这里如果使用 match 方法则不匹配
>>> m
<_sre.SRE_Match object at 0x10cc03ac0>
>>> m.group()
'12'
>>> m = pattern.search('one12twothree34four', 10, 30) # 指定字符串区间
>>> m
<_sre.SRE_Match object at 0x10cc03b28>
>>> m.group()
'34'
>>> m.span()
(13, 15)
再来看一个例子:
# -*- coding: utf-8 -*-
import re
# 将正则表达式编译成 Pattern 对象
pattern = re.compile(r'\d+')
# 使用 search() 查找匹配的子串,不存在匹配的子串时将返回 None
# 这里使用 match() 无法成功匹配
m = pattern.search('hello 123456 789')
if m:
# 使用 Match 获得分组信息
print ('matching string:',m.group())
# 起始位置和结束位置
print ('position:',m.span())
执行结果:
matching string: 123456
position: (6, 12)
(3)findall 方法
上面的 match 和 search 方法都是一次匹配,只要找到了一个匹配的结果就返回。然而,在大多数时候,我们需要搜索整个字符串,获得所有匹配的结果。
findall 方法的使用形式如下:
findall(string[, pos[, endpos]])
其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。
findall 以列表形式返回全部能匹配的子串,如果没有匹配,则返回一个空列表。
看看例子:
import re
pattern = re.compile(r'\d+') # 查找数字
result1 = pattern.findall('hello 123456 789')
result2 = pattern.findall('one1two2three3four4', 0, 10)
print (result1)
print (result2)
执行结果:
['123456', '789']
['1', '2']
再举一个例子:
# re_test.py
import re
#re模块提供一个方法叫compile模块,提供我们输入一个匹配的规则
#然后返回一个pattern实例,我们根据这个规则去匹配字符串
pattern = re.compile(r'\d+\.\d*')
#通过partten.findall()方法就能够全部匹配到我们得到的字符串
result = pattern.findall("123.141593, 'bigcat', 232312, 3.15")
#findall 以 列表形式 返回全部能匹配的子串给result
for item in result:
print (item)
运行结果:
123.141593
3.15
(4)finditer 方法
finditer 方法的行为跟 findall 的行为类似,也是搜索整个字符串,获得所有匹配的结果。但它返回一个顺序访问每一个匹配结果(Match 对象)的迭代器。
看看例子:
# -*- coding: utf-8 -*-
import re
pattern = re.compile(r'\d+')
result_iter1 = pattern.finditer('hello 123456 789')
result_iter2 = pattern.finditer('one1two2three3four4', 0, 10)
print (type(result_iter1))
print (type(result_iter2))
print 'result1...'
for m1 in result_iter1: # m1 是 Match 对象
print ('matching string: {}, position: {}'.format(m1.group(), m1.span()))
print 'result2...'
for m2 in result_iter2:
print ('matching string: {}, position: {}'.format(m2.group(), m2.span()))
执行结果:
<type 'callable-iterator'>
<type 'callable-iterator'>
result1...
matching string: 123456, position: (6, 12)
matching string: 789, position: (13, 16)
result2...
matching string: 1, position: (3, 4)
matching string: 2, position: (7, 8)
(5)split 方法
split 方法按照能够匹配的子串将字符串分割后返回列表,它的使用形式如下:
split(string[, maxsplit])
其中,maxsplit 用于指定最大分割次数,不指定将全部分割。
看看例子:
import re
p = re.compile(r'[\s\,\;]+')
print (p.split('a,b;; c d'))
执行结果:
['a', 'b', 'c', 'd']
(6)sub 方法
sub 方法用于替换。它的使用形式如下:
sub(repl, string[, count])
其中,repl 可以是字符串也可以是一个函数:
- 如果 repl 是字符串,则会使用 repl 去替换字符串每一个匹配的子串,并返回替换后的字符串,另外,repl 还可以使用 id 的形式来引用分组,但不能使用编号 0;
- 如果 repl 是函数,这个方法应当只接受一个参数(Match 对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
- count 用于指定最多替换次数,不指定时全部替换。
看看例子:
import re
p = re.compile(r'(\w+) (\w+)') # \w = [A-Za-z0-9]
s = 'hello 123, hello 456'
print (p.sub(r'hello world', s)) # 使用 'hello world' 替换 'hello 123' 和 'hello 456'
print (p.sub(r'\2 \1', s)) # 引用分组
def func(m):
print(m)
return 'hi' + ' ' + m.group(2) #group(0) 表示本身,group(1)表示hello,group(2) 表示后面的数字
print (p.sub(func, s)) #多次sub,每次sub的结果传递给func
print (p.sub(func, s, 1)) # 最多替换一次
执行结果:
hello world, hello world
123 hello, 456 hello
hi 123, hi 456
hi 123, hello 456
(7)匹配中文
在某些情况下,我们想匹配文本中的汉字,有一点需要注意的是,中文的 unicode 编码范围 主要在 [u4e00-u9fa5],这里说主要是因为这个范围并不完整,比如没有包括全角(中文)标点,不过,在大部分情况下,应该是够用的。
假设现在想把字符串 title = u'你好,hello,世界' 中的中文提取出来,可以这么做:
import re
title = '你好,hello,世界'
pattern = re.compile(r'[\u4e00-\u9fa5]+')
result = pattern.findall(title)
print (result)
注意到,我们在正则表达式前面加上了两个前缀 ur,其中 r 表示使用原始字符串,u 表示是 unicode 字符串。
执行结果:
['你好', '世界']
五、贪婪模式与非贪婪模式
- 贪婪模式:在整个表达式匹配成功的前提下,尽可能多的匹配 ( * );
- 非贪婪模式:在整个表达式匹配成功的前提下,尽可能少的匹配 ( ? );
- Python里数量词默认是贪婪的。
示例一 : 源字符串:abbbc
- 使用贪婪的数量词的正则表达式
ab*
,匹配结果: abbb。
*
决定了尽可能多匹配 b,所以a后面所有的 b 都出现了。
- 使用非贪婪的数量词的正则表达式
ab*?
,匹配结果: a。
即使前面有
*
,但是?
决定了尽可能少匹配 b,所以没有 b。
示例二 : 源字符串:aa<div>test1</div>bb<div>test2</div>cc
- 使用贪婪的数量词的正则表达式:
<div>.*</div>
- 匹配结果:
<div>test1</div>bb<div>test2</div>
这里采用的是贪婪模式。在匹配到第一个"
</div>
"时已经可以使整个表达式匹配成功,但是由于采用的是贪婪模式,所以仍然要向右尝试匹配,查看是否还有更长的可以成功匹配的子串。匹配到第二个"</div>
"后,向右再没有可以成功匹配的子串,匹配结束,匹配结果为"<div>test1</div>bb<div>test2</div>
"
- 使用非贪婪的数量词的正则表达式:
<div>.*?</div>
- 匹配结果:
<div>test1</div>
正则表达式二采用的是非贪婪模式,在匹配到第一个"
</div>
"时使整个表达式匹配成功,由于采用的是非贪婪模式,所以结束匹配,不再向右尝试,匹配结果为"<div>test1</div>
"。
正则表达式测试网址
六、正则表达式爬虫实战
现在拥有了正则表达式这把神兵利器,我们就可以进行对爬取到的全部网页源代码进行筛选了。
下面我们一起尝试一下爬取内涵段子网站: http://www.neihan8.com/article/list_5_1.html
打开之后,不难看到里面一个一个灰常有内涵的段子,当你进行翻页的时候,注意url地址的变化:
- 第一页url: http: //www.neihan8.com/article/list_5_1 .html
- 第二页url: http: //www.neihan8.com/article/list_5_2 .html
- 第三页url: http: //www.neihan8.com/article/list_5_3 .html
- 第四页url: http: //www.neihan8.com/article/list_5_4 .html
这样我们的url规律找到了,要想爬取所有的段子,只需要修改一个参数即可。 下面我们就开始一步一步将所有的段子爬取下来吧。
第一步:获取数据
按照我们之前的用法,我们需要写一个加载页面的方法。这里我们统一定义一个类,将url请求作为一个成员方法处理。
创建一个文件,叫duanzi_spider.py,然后定义一个Spider类,并且添加一个加载页面的成员方法
class Duanzi_spider():
def __init__(self):
self.url = "http://www.neihan8.com/article/list_5_%s.html"
self.headers = {
"User_Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleW\
ebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
"Accept-Encoding":None,
"Accept-Language": "zh-CN,zh;q=0.8"
}
def load_page(self,url):
'''可以复用的页面请求方法
'''
response = requests.get(url,timeout=10,headers=self.headers)
if response.status_code==200:
print(response.request.headers)
return response.content.decode("gbk")
else:
raise ValueError("status_code is:",response.status_code)
- 程序正常执行的话,我们会在屏幕上打印了内涵段子第一页的全部html代码。 但是我们发现,html中的中文部分显示的可能是乱码 。
注意 :对于每个网站对中文的编码各自不同,所以html.decode('gbk')的写法并不是通用写法,根据网站的编码而异
第二步:筛选数据
接下来我们已经得到了整个页面的数据。 但是,很多内容我们并不关心,所以下一步我们需要进行筛选。 如何筛选,就用到了正则表达式。
首先我们需要一个匹配规则,打开内涵段子的网页查看源代码:
<a href="/article/44959.html"><b>回家奔丧</b></a></h4>
<div class="f18 mb20">
一老太太跋山涉水来到部队,看望她的孙子,<br />
警卫问:“她找谁?”老太说:“找xx,”警卫打完电话说:<br />
“xx三天前说她他奶奶过世,回家奔丧去了,奔丧去了,去了。。”
</div>
在我们得到的response中运用正则表达式进行筛选匹配:
import re
def get_content(self,html):
''' 根据网页内容,同时匹配标题和段子内容
'''
pattern = re.compile(r'<a\shref="/article/\d+\.html">(.*?)</a>.*?<div\sclass="f18 mb20">(.*?)</div>', re.S)
t = pattern.findall(html)
result = []
for i in t:
temp = []
for j in i:
j = re.sub(r"[<b>|</b>|<br />|<br>|<p>|</p>|\\u3000|\\r\\n|\s]","",j)
j = j.replace("&ldqo;",'"').replace("&helli;","...").replace("&dqo;",'"').strip()
# j = re.sub(r"[&ldqo;|&dqo;]","\"",j)?
# j = re.sub(r"…","...",j)
temp.append(j)
print(temp)
result.append(temp)
return result
- 这里需要注意一个是
re.S
是正则表达式中匹配的一个参数。- 如果 没有re.S 则是 只匹配一行 有没有符合规则的字符串,如果没有则下一行重新匹配。
- 如果 加上re.S 则是将 所有的字符串 将一个整体进行匹配,findall 将所有匹配到的结果封装到一个list中。
第三步:保存数据
- 我们可以将所有的段子存放在文件中。比如,我们可以将得到的每个item不是打印出来,而是存放在一个叫 duanzi.txt 的文件中也可以。
def save_content(self,content):
myFile = open("./duanzi.txt", 'a')
for temp in content:
myFile.write("\n"+temp[0]+"\n"+temp[1]+"\n")
myFile.write("-----------------------------------------------------")
myFile.close()
- 然后我们实现保存的方法 ,当前页面的所有段子就存在了本地的duanzi.txt文件中。
第四步:实现循环抓取
- 接下来我们就通过参数的传递对page进行叠加来遍历 内涵段子吧的全部段子内容。
- 同时也通过这个run方法实现整个程序的主要逻辑
def run(self):
i = 1
while True:
html = self.load_page(self.url%i)
result = self.get_content(html)
print ("按回车继续...")
print ("输入 quit 退出")
command = input()
if (command == "quit"):
break
i+=1
最后,我们执行我们的代码,完成后查看当前路径下的duanzi.txt文件,里面已经有了我们要的内涵段子。
以上便是一个非常精简使用的小爬虫程序,使用起来很是方便,如果想要爬取其他网站的信息,只需要修改其中某些参数和一些细节就行了。如果您有任何疑问或者好的建议,期待你的留言与评论!