Unity学习2:如何实现个性化渲染平面(图文详细)

  • AR Plane Manager(平面追踪对象管理器)
  • 可视化平面
  • 个性化渲染平面

AR Plane Manager(平面追踪对象管理器)

平面管理器是一种可跟踪的管理器。

平面管理器为环境中每个检测到的平面创建游戏对象。平面是由位姿、尺寸和边界点表示的平面。边界点是凸的(每个检测出来的边界角都是大于90°)。

环境中可以被检测为平面的特征示例包括水平桌子、地板、工作台面和垂直墙壁。

负责管理平面以及管理检测出的这些平面,但不负责渲染平面,由其Plane Prefab属性指定的预制体负责

两个属性组件:

  1. Plane Prefab:平面预制体,不赋值的会自动实例化一个空对象
  2. Detection Mode:设置平面检测方式,如水平平面(Horizontal),垂直平面(Vertical),水平和垂直平面(Everything),不检测平面(Nothing)

unity 室内用平行光 unity平面_平面

可视化平面

要可视化平面,您需要创建一个 Prefab 或 GameObject,其中包含一个订阅 ARPlane 的 boundaryChanged 事件的组件。 ARFoundation 提供了一个 ARPlaneMeshVisualizer。该组件从边界顶点生成网格并将其分配给 MeshCollider、MeshFilter 和 LineRenderer(如果存在)。

要创建一个新的 GameObject,然后您可以使用它来创建您的 Prefab,请在您的 Scene 视图中单击鼠标右键,然后从出现的上下文菜单中选择 GameObject > XR > AR Default Plane

新建一个AR Default Plane对象作为预制体(默认平面预制体)

其中各属性的说明:

AR Plane:负责各类属性事宜,如是否在移除平面时销毁此实例化对象

AR Plane Mesh Visualizer:主要从边界特征点和其他特征点三角化生成一个平面网格

Mesh Renderer:使用Mesh Renderer采用合适材质渲染平面

Line Renderer:负责渲染平面可视化后的边界连线

unity 室内用平行光 unity平面_android_02

创建 AR Default Plane 后,将其分配给 ARPlaneManager 的 Plane Prefab 字段。您可以直接使用它,也可以通过将AR Default Plane 拖到 Assets 文件夹中来创建 Prefab。默认平面如下所示:

unity 室内用平行光 unity平面_unity_03

个性化渲染平面

我下载的是官方的demo

  1. 首先将AR Default Plane对象下的Line Renderer组件移除
  2. 编写一个c#脚本ARFeatheredPlaneMeshVisualizer,并将其作为组件添加到AR Default Plane对象上
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.XR.ARFoundation;

/// <summary>
/// This plane visualizer demonstrates the use of a feathering effect
/// at the edge of the detected plane, which reduces the visual impression
/// of a hard edge.
/// </summary>
[RequireComponent(typeof(ARPlaneMeshVisualizer), typeof(MeshRenderer), typeof(ARPlane))]
public class ARFeatheredPlaneMeshVisualizer : MonoBehaviour
{
    [Tooltip("The width of the texture feathering (in world units).")]
    [SerializeField]
    float m_FeatheringWidth = 0.2f;

    /// <summary>
    /// The width of the texture feathering (in world units).
    /// </summary>
    public float featheringWidth
    { 
        get { return m_FeatheringWidth; }
        set { m_FeatheringWidth = value; } 
    }

    void Awake()
    {
        m_PlaneMeshVisualizer = GetComponent<ARPlaneMeshVisualizer>();
        m_FeatheredPlaneMaterial = GetComponent<MeshRenderer>().material;
        m_Plane = GetComponent<ARPlane>();
    }

    void OnEnable()
    {
        m_Plane.boundaryChanged += ARPlane_boundaryUpdated;
    }

    void OnDisable()
    {
        m_Plane.boundaryChanged -= ARPlane_boundaryUpdated;
    }

    void ARPlane_boundaryUpdated(ARPlaneBoundaryChangedEventArgs eventArgs)
    {
        GenerateBoundaryUVs(m_PlaneMeshVisualizer.mesh);
    }

    /// <summary>
    /// Generate UV2s to mark the boundary vertices and feathering UV coords.
    /// </summary>
    /// <remarks>
    /// The <c>ARPlaneMeshVisualizer</c> has a <c>meshUpdated</c> event that can be used to modify the generated
    /// mesh. In this case we'll add UV2s to mark the boundary vertices.
    /// This technique avoids having to generate extra vertices for the boundary. It works best when the plane is 
    /// is fairly uniform.
    /// </remarks>
    /// <param name="mesh">The <c>Mesh</c> generated by <c>ARPlaneMeshVisualizer</c></param>
    void GenerateBoundaryUVs(Mesh mesh)
    {
        int vertexCount = mesh.vertexCount;

        // Reuse the list of UVs
        s_FeatheringUVs.Clear();
        if (s_FeatheringUVs.Capacity < vertexCount) { s_FeatheringUVs.Capacity = vertexCount; }

        mesh.GetVertices(s_Vertices);

        Vector3 centerInPlaneSpace = s_Vertices[s_Vertices.Count - 1];
        Vector3 uv = new Vector3(0, 0, 0);
        float shortestUVMapping = float.MaxValue;

        // Assume the last vertex is the center vertex.
        for (int i = 0; i < vertexCount - 1; i++)
        {
            float vertexDist = Vector3.Distance(s_Vertices[i], centerInPlaneSpace);

            // Remap the UV so that a UV of "1" marks the feathering boudary.
            // The ratio of featherBoundaryDistance/edgeDistance is the same as featherUV/edgeUV.
            // Rearrange to get the edge UV.
            float uvMapping = vertexDist / Mathf.Max(vertexDist - featheringWidth, 0.001f);
            uv.x = uvMapping;

            // All the UV mappings will be different. In the shader we need to know the UV value we need to fade out by.
            // Choose the shortest UV to guarentee we fade out before the border.
            // This means the feathering widths will be slightly different, we again rely on a fairly uniform plane.
            if (shortestUVMapping > uvMapping) { shortestUVMapping = uvMapping; }

            s_FeatheringUVs.Add(uv);
        }

        m_FeatheredPlaneMaterial.SetFloat("_ShortestUVMapping", shortestUVMapping);

        // Add the center vertex UV
        uv.Set(0, 0, 0);
        s_FeatheringUVs.Add(uv);

        mesh.SetUVs(1, s_FeatheringUVs);
        mesh.UploadMeshData(false);
    }

    static List<Vector3> s_FeatheringUVs = new List<Vector3>();

    static List<Vector3> s_Vertices = new List<Vector3>();

    ARPlaneMeshVisualizer m_PlaneMeshVisualizer;

    ARPlane m_Plane;

    Material m_FeatheredPlaneMaterial;
}

unity 室内用平行光 unity平面_android_04

  1. 在project窗口的Assets下新建一个文件夹Shaders,在其中右键-》create-》shader-》Unlit Shader创建一个shader文件,并命名为FeatheredPlaneShader
Shader "Unlit/FeatheredPlaneShader"
{
    Properties
    {
        _MainTex("Texture", 2D) = "white" {}
        _TexTintColor("Texture Tint Color", Color) = (1,1,1,1)
        _PlaneColor("Plane Color", Color) = (1,1,1,1)
    }
        SubShader
        {
            Tags { "RenderType" = "Transparent" "Queue" = "Transparent" }
            LOD 100
            Blend SrcAlpha OneMinusSrcAlpha
            ZWrite Off

            Pass
            {
                CGPROGRAM
                #pragma vertex vert
                #pragma fragment frag

                #include "UnityCG.cginc"

                struct appdata
                {
                    float4 vertex : POSITION;
                    float2 uv : TEXCOORD0;
                    float3 uv2 : TEXCOORD1;

                    UNITY_VERTEX_INPUT_INSTANCE_ID
                };

                struct v2f
                {
                    float4 vertex : SV_POSITION;
                    float2 uv : TEXCOORD0;
                    float3 uv2 : TEXCOORD1;

                    UNITY_VERTEX_OUTPUT_STEREO
                };

                sampler2D _MainTex;
                float4 _MainTex_ST;
                fixed4 _TexTintColor;
                fixed4 _PlaneColor;
                float _ShortestUVMapping;

                v2f vert(appdata v)
                {
                    v2f o;

                    UNITY_SETUP_INSTANCE_ID(v);
                    UNITY_INITIALIZE_OUTPUT(v2f, o);
                    UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);

                    o.vertex = UnityObjectToClipPos(v.vertex);
                    o.uv = TRANSFORM_TEX(v.uv, _MainTex);
                    o.uv2 = v.uv2;
                    return o;
                }

                fixed4 frag(v2f i) : SV_Target
                {
                    UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(i);

                    fixed4 col = tex2D(_MainTex, i.uv) * _TexTintColor;
                    col = lerp(_PlaneColor, col, col.a);
                    // Fade out from as we pass the edge.
                    // uv2.x stores a mapped UV that will be "1" at the beginning of the feathering.
                    // We fade until we reach at the edge of the shortest UV mapping.
                    // This is the remmaped UV value at the vertex.
                    // We choose the shorted one so that ll edges will fade out completely.
                    // See ARFeatheredPlaneMeshVisualizer.cs for more details.
                    col.a *= 1 - smoothstep(1, _ShortestUVMapping, i.uv2.x);
                    return col;
                }
                ENDCG
            }
        }
}

unity 室内用平行光 unity平面_List_05

  1. 然后在Materials文件下创建一个新的材质,右键-》create-》material,并命名为Plane Mat,其下有一属性Shader,在其中搜索刚写好的shader脚本代码,添加进来
  2. 在project窗口的Assets下新建一个文件夹Textures,将一个png格式的渲染图片拖到此文件夹下,自动生成一个同名的(Texture 2D)文件
  3. 选中Plant Mat,在Inspector窗口下,有一个Texture属性,选择我们刚拖进来的png图片,其中Texture Tint Color为纹理显示的颜色,Plane Color为平面的颜色,再将这个材质拖动添加到AR Default Plane对象上去,

unity 室内用平行光 unity平面_平面_06

  1. 至此个性化渲染平面已经制作完成,总结一下:不同于默认的黄色平面,黑色边界线,自定义的平面效果可以设置Shader脚本渲染Texture图片纹理属性,并将Texture图片设置在一个新材质material上,material可以设置纹理颜色和平面背景颜色(一般是透明)