定义
二叉搜索树(Binary Search Tree)或称二叉查找树,也称二叉排序树(Binary Sort Tree)。它或者是一棵空树,或者是具有下列性质的二叉树:
若左子树不空,则左子树上所有节点的值均小于它的根节点的值;
若右子树不空,则右子树上所有节点的值均大于它的根节点的值;
左、右子树也分别为二叉搜索树;
性质
二叉搜索树与普通二叉树相比,有一些优秀的特征或性质:
由于节点是有序排放的:左子树<根节点<右子树。故在查找一个节点的时候,只需先和根节点比较,再决定是进入左子树还是右子树查找。而普通二叉树需要一个一个地遍历。
查找、插入的时间复杂度是O(h),h是树的高度。即当树的高度尽量低(比较平衡)时,效率高。
算法解释
不得不说,非线性结构的操作确实难于线性结构的,有些算法的逻辑比较复杂。下面对代码中给出的部分算法进行解释,便于阅读。
构造方法:BinarySearchTree();建树的过程就是一个插入的过程,所以插入操作是重要的。
求叶子节点数:int leaf();按某种方式遍历树,若左右孩子皆为空,即为叶子节点。代码中是按中序遍历的。
查找指定节点:bool search(ElemType);根据二叉搜索树节点的分布特点,查找只需在左或右子树中进行,并且插入树中已有的节点也算插入失败。插入操作逻辑比较清楚,代码易看懂。
获取指定节点的前驱:BTNode* predecessor(ElemType);这个操作在普通二叉树中是没有的。在二叉搜索树中,某节点的前驱指的是中序遍历时的前驱。故该操作本质上是一个中序遍历的过程。稍微不同的是,在遍历的过程中需要记录最近一次遍历的节点plastVisit,并判断当前访问的节点是否是指定节点。若是,则返回plastVisit。
获取后继和获取前驱的道理是一样的。
获取最小节点:BTNode* minimum();二叉搜索树中的最小节点一定是位于左子树(如果存在)。于是,不断遍历左子树即可,比较简单。
获取最大节点:BTNode* maximum();二叉搜索树中的最大节点一定是位于右子树(如果存在)。于是,不断遍历右子树即可,比较简单。
插入节点:bool insertNode(ElemType);插入的过程本质上也是查找,需要记住的是:新节点会插入到叶子节点处。
遍历:void traverse();二叉搜索树的遍历可以是多样的,各种遍历方式也在上一篇二叉树中实现了,这里只给出中序遍历。因为,对一棵二叉搜索树进行中序遍历会得到节点从小到大的排序序列。
删除节点:bool deleteNode(ElemType);删除的规则是这样的:
若待删节点无左子树,则用其右子树的根节点替换它。
若待删节点有左子树,则在左子树中寻找中序遍历的最后一个节点,用该节点替换它。
删除规则比较好看懂,但具体实施时,细节繁多,很不容易。这也是所有操作中最复杂的。画图理解:
其它操作在上一篇二叉树中已有所解释,不再赘述。具体细节还得看代码,代码较长,建议以方法为单位来理解,
代码
类定义
#include<iostream>
#include<iomanip>
#include<stack>
#include<queue>
using namespace std;
typedef int ElemType;
//二叉树节点
class BTNode //Binary Tree Node
{
public:
ElemType data;
//左孩子
//右孩子
BTNode(ElemType d, BTNode* left = NULL, BTNode* right = NULL)
:data(d), lchild(left), rchild(right){}
};
//二叉搜索树
class BinarySearchTree
{
private:
//树根
BTNode* Root;
//节点总数
int size;
public:
//构造方法
BinarySearchTree();
//析构方法
~BinarySearchTree();
//判断树空
bool empty()
return Root == NULL;}
//求节点总数
int getSize()
return size;}
//求叶子节点数
int leaf();
//查找
bool search(ElemType);
//获取父节点
BTNode* parent(ElemType);
//获取前驱
BTNode* predecessor(ElemType);
//获取后继
BTNode* successor(ElemType);
//获取最小节点
BTNode* minimum();
//获取最大节点
BTNode* maximum();
//插入新节点
bool insertNode(ElemType);
//删除节点
bool deleteNode(ElemType);
//中序遍历
void traverse()
{inOrderWithoutRecursion();}
void inOrderWithoutRecursion();
};
类实现
//构造方法
BinarySearchTree::BinarySearchTree()
{
size = 0;
Root = NULL;
ElemType data;
"建树,输入节点,输入0结束:";
while (cin >> data && data)
insertNode(data);
}
//析构方法
BinarySearchTree::~BinarySearchTree()
{
if (!empty())
{
queue<BTNode*> q;
q.push(Root);
BTNode* p = NULL;
while (!q.empty())
{
p = q.front();
q.pop();
//左孩子不为空,则左孩子入队
if (p->lchild)
q.push(p->lchild);
//右孩子不为空,则右孩子入队
if (p->rchild)
q.push(p->rchild);
//释放内存
delete p;
}
}
}
//求叶子节点数
int BinarySearchTree::leaf()
{
int num = 0;
//按中序遍历
if (!empty())
{
stack<BTNode*> s;
BTNode* p = Root;
while (!s.empty() || p)
{
if (p)
{
s.push(p);
p = p->lchild;
}
else
{
p = s.top();
s.pop();
//左右子树均为空,则为叶子节点
if (p->lchild == NULL && p->rchild == NULL)
num++;
p = p->rchild;
}
}
}
return num;
}
//查找
bool BinarySearchTree::search(ElemType data)
{
if (!empty())
{
BTNode* p = Root;
while (p)
{
if (data == p->data)
return true;
else if (data < p->data)
p = p->lchild;
else
p = p->rchild;
}
}
//树空或查找失败
return false;
}
BTNode* BinarySearchTree::parent(ElemType data)
{
if (!empty())
{
//根节点的父节点为空
if (Root->data == data)
return NULL;
stack<BTNode*> s;
BTNode* p = Root;
while (!s.empty() || p)
{
if (p)
{
s.push(p);
p = p->lchild;
}
else
//左子树访问完后,访问右子树
p = s.top();
s.pop();
if ((p->lchild && p->lchild->data == data) || (p->rchild && p->rchild->data == data))
return p;
p = p->rchild;
}
}
}
return NULL;
}
//获取前驱
BTNode* BinarySearchTree::predecessor(ElemType data)
{
BTNode* pcur, *plastVisit;
pcur = plastVisit = NULL;
if (!empty())
{
stack<BTNode*> s;
pcur = Root;
while (!s.empty() || pcur)
{
if (pcur)
{
//plastVisit = pcur;
s.push(pcur);
pcur = pcur->lchild;
}
else
{
pcur = s.top();
s.pop();
if (pcur->data == data)
return plastVisit;
else
plastVisit = pcur;
pcur = pcur->rchild;
}
}
}
return plastVisit;
}
//获取后继
BTNode* BinarySearchTree::successor(ElemType data)
{
BTNode* pcur = NULL;
pcur = Root;
if (!empty())
{
stack<BTNode*> s;
while (!s.empty() || pcur)
{
if (pcur)
{
s.push(pcur);
pcur = pcur->lchild;
}
else
{
pcur = s.top();
s.pop();
if (pcur->data == data)
return pcur->rchild;
pcur = pcur->rchild;
}
}
}
//空树
return NULL;
}
//获取最小节点
BTNode* BinarySearchTree::minimum()
{
//最小节点在左子树最下边
if (!empty())
{
BTNode* p = Root;
while (p->lchild)
p = p->lchild;
return p;
}
//树空
return NULL;
}
//获取最大节点
BTNode* BinarySearchTree::maximum()
{
//最大节点在右子树最下边
if (!empty())
{
BTNode* p = Root;
while (p->rchild)
p = p->rchild;
return p;
}
//树空
return NULL;
}
//插入新节点
bool BinarySearchTree::insertNode(ElemType data)
{
/*
新节点都会被插入到叶子处
插入一般不会失败,除非是插入了重复节点。
*/
if (Root == NULL)
{
new BTNode(data);
size++;
return true;
}
else
{
BTNode* p = Root;
while (true)
{
if (data < p->data)
{
//如果有左子树,则继续遍历左子树
if (p->lchild)
p = p->lchild;
else
//否则,插入节点,下同
new BTNode(data);
break;
}
}
else if (data > p->data)
{
if (p->rchild)
p = p->rchild;
else
{
new BTNode(data);
break;
}
}
else//遇到重复节点
return false;
}
//插入新节点成功,节点总数加一
size++;
return true;
}
}
//删除节点
bool BinarySearchTree::deleteNode(ElemType data)
{
/*
删除规则
1.若待删节点无左子树,则用其右子树的根节点替换它。
2.若待删节点有左子树,则在左子树中寻找中序遍历的最后一个节点,用该节点替换它。
*/
if (!empty())
{
//树中无此节点,删除失败
if (!search(data))
return false;
/*
p:待删结点
Parent:待删除节点的父节点
temp:替换节点
tempp:替换节点的父节点
*/
BTNode* p, *Parent, *temp, *tempp;
p = Parent = temp = tempp = NULL;
//获取待删除节点的父节点
Parent = parent(data);
//根据父节点,确定待删结点
if (Parent->lchild && Parent->lchild->data == data)
p = Parent->lchild;
else
p = Parent->rchild;
//如果左子树不为空,查找其中序遍历的最后一个节点
if (p->lchild)
{
temp = p->lchild;
while (temp->rchild)
{
tempp = temp;
//不断遍历右子树
temp = temp->rchild;
}
//如果p的左孩子即是替换节点
if (tempp == NULL)
p->lchild = temp->lchild;
else//替换节点的左子树作为其父节点的右子树(这句难以理解,需要多想想)
tempp->rchild = temp->lchild;
//替换节点继承待删结点的左右孩子
temp->lchild = p->lchild;
temp->rchild = p->rchild;
}
else
temp = p->rchild;
//替换节点替换掉待删结点(这也是为什么需要找到待删结点的父节点)
if (Parent == NULL) //待删结点恰为根节点
Root = temp;
else if (Parent->lchild == p) //待删结点本身处于左子树
Parent->lchild = temp;
else//待删结点本身处于右子树
Parent->rchild = temp;
//删除待删结点
delete p;
//节点总数减一
size--;
return true;
}
//树空
return false;
}
//中序遍历
void BinarySearchTree::inOrderWithoutRecursion()
{
if (!empty())
{
stack<BTNode*> s;
BTNode* p = Root;
while (!s.empty() || p)
{
if (p)
{
s.push(p);
p = p->lchild;
}
else
{
p = s.top();
s.pop();
cout << setw(4) << p->data;
p = p->rchild;
}
}
cout << endl;
}
}
主函数
int main()
{
"******二叉搜索树***by David***" << endl;
BinarySearchTree tree;
"中序遍历" << endl;
tree.traverse();
"树中节点总数 " << tree.getSize() << endl;
"叶子节点数 " << tree.leaf() << endl;
BTNode* p = NULL;
p = tree.minimum();
"最小节点是 " << p->data << endl : cout << "树空!" << endl;
p = tree.maximum();
"最大节点是 " << p->data << endl : cout << "树空!" << endl;
ElemType data = 2;
"查找节点 " << data << endl;
if (tree.search(data))
{
"节点 " << data << " 查找成功!" << endl;
p = tree.predecessor(data);
"节点 " << data << " 的前驱是 " << p->data << endl : cout << "无前驱!" << endl;
p = tree.successor(data);
"节点 " << data << " 的后继是 " << p->data << endl : cout << "无后继!" << endl;
}
else
"节点 " << data << "不在树中!" << endl;
data = 6;
"删除节点 " << data << endl;
if (tree.deleteNode(data))
{
"删除成功!" << endl;
"中序遍历" << endl;
tree.traverse();
"树中节点总数 " << tree.getSize() << endl;
"叶子节点数 " << tree.leaf() << endl;
data = 5;
"查找节点 " << data << endl;
if (tree.search(data))
{
"节点 " << data << " 查找成功!" << endl;
p = tree.predecessor(data);
"节点 " << data << " 的前驱是 " << p->data << endl : cout << "无前驱!" << endl;
p = tree.successor(data);
"节点 " << data << " 的后继是 " << p->data << endl : cout << "无后继!" << endl;
}
else
"节点 " << data << "不在树中!" << endl;
}
else
"删除失败!" << endl;
cout << endl;
"pause");
return 0;
}
运行
算法优化
插入算法的一个优化版本
//插入新节点
bool BinarySearchTree::insertNode(ElemType data)
{
BTNode *parent, *child;
parent = NULL;
child = Root;
while (child)
{
parent = child;
if (data < child->data)
child = child->lchild;
else if (data > child->data)
child = child->rchild;
else//插入相同关键字的节点,返回false
return false;
}
//此时parent要么为空,要么就是叶子节点
if (parent == NULL)//空树
new BTNode(data);
else if (data < parent->data)
new BTNode(data);
else
new BTNode(data);
size++;
return true;
}