14、树状数组
(1)、单点增减+区间求和
思路:C[x]表示该点的元素:sum(x)=C[1]+C[2]+……C[x]
1. int arr[MAXN];
2. inline int sum(int x){int res=0;while(x)res+=arr[x],x-=lowbit(x);return res;}
3. inline void add(int x,int n){while(x<MAXN)arr[x]+=n,x+=lowbit(x);}
4. inline int query(int x,int y){return sum(y)-sum(x-1);}
(2)、区间增减+单点查询
思路:C[x]表示该点元素与左边元素的差值:num[x]=C[1]+C[2]+……C[x]
[cpp]
view plain
copy
print
?
1. int arr[MAXN]
2. inline int sum(int x){int res=0;while(x)res+=arr[x],x-=lowbit(x);return res;}
3. inline void add(int x,int n){while(x<MAXN)arr[x]+=n,x+=lowbit(x);}
4. inline int update(int x,int y,int n){add(x,n);add(y+1,-n);}
(3)、区间增减+区间查询
思路:C1[x]表示该点元素与左边的差值,C2[x]表示的是x*C[x]
[cpp]
view plain
copy
print
?
1. sum(sum(C[j],j<=i)i<=x)
2. = x*C[1]+(x-1)*C[2]+……+C[x]
3. =(x+1)*sum(C[i],i<=x)-sum(i*C[i],i<=x);
则可以想到用C1[x]维护C[x]的值,C2[x]维护x*C[X]的值
[cpp]
view plain
copy
print
?
1. template <typename X>
2. struct tree_array{
3. struct tree_array_single{
4. X arr[MAXN];
5. void add(int x,X n){while(x<=N)arr[x]+=n,x+=lowbit(x);}
6. int x){X sum=0;while(x)sum+=arr[x],x-=lowbit(x);return sum;}
7. }T1,T2;
8. void reset(){CLR(T1.arr,0); CLR(T2.arr,0);}
9. void add(int x,X n){T1.add(x,n);T2.add(x,x*n);}
10. void update(int L,int R,int n){add(L,n);add(R+1,-n);}
11. int x){return (x+1)*T1.sum(x)-T2.sum(x);}
12. int L,int R){return sum(R)-sum(L-1);}
13. };
15、多维树状数组
①单点增减(add) + 矩形求和(query)
②矩形增减(update) + 单点求值(sum)
[cpp]
view plain
copy
print
?
1. int arr[MAXN][MAXN]
2. inline void add(int x,int y,int n) {
3. for(int i=x;i<MAXN;i+=lowbit(i))
4. for(int j=y;j<MAXN;j+=lowbit(j))
5. arr[i][j]+=n;
6. }
7. inline int sum(int x,int y){
8. int res=0;
9. for(int i=x;i;i-=lowbit(i))
10. for(int j=y;j;j-=lowbit(j))
11. res+=arr[i][j];
12. return res;
13. }
14. inline int query(int L,int B,int R,int T) {
15. return sum(R,T)+sum(L-1,B-1)-sum(R,B-1)-sum(L-1,T);
16. }
17. inline void update(int L,int B,int R,int T,int n){
18. update(L,B,n);update(L,T+1,n);update(R+1,B,n);update(R+1,T+1,n);
19. }
③矩形增减(update)+ 矩形求和(query)
[cpp]
view plain
copy
print
?
1. template<typename X>
2. class tree_array{
3. struct tree_array_single{
4. X arr[MAXN][MAXN];
5. void add(int x,int y,X n){
6. for(int i=x; i<MAXN; i+=lowbit(i))
7. for(int j=y; j<MAXN; j+=lowbit(j))
8. arr[i][j]+=n;
9. }
10. int x,int y){
11. X res=0;
12. for(int i=x; i; i-=lowbit(i))
13. for(int j=y; j; j-=lowbit(j))
14. res+=arr[i][j];
15. return res;
16. }
17. } T1,T2,T3,T4;
18. void add(int x,int y,int n){
19. T1.add(x,y,n);T2.add(x,y,y*n);T3.add(x,y,x*n);T4.add(x,y,x*y*n);
20. }
21. int x,int y){
22. return (x+1)*(y+1)*T1.sum(x,y)-(x+1)*T2.sum(x,y)-(y+1)*T3.sum(x,y)+T4.sum(x,y);}
23. public:
24. void init(){CLR(T1.arr,0);CLR(T2.arr,0);CLR(T3.arr,0);CLR(T4.arr,0);}
25. void update(int L,int B,int R,int T,int n){
26. add(L,B,n);add(L,T+1,-n);add(R+1,B,-n);add(R+1,T+1,n);
27. }
28. int L,int B,int R,int T){
29. return sum(R,T)-sum(L-1,T)-sum(R,B-1)+sum(L-1,B-1);
30. }
31. };
④单点增减(add) + 立方体求和(query)
⑤立方体增减(update) + 单点求值(sum)
[cpp]
view plain
copy
print
?
1. int arr[MAXN][MAXN][MAXN];
2. inline int sum(int x,int y,int z){
3. int res=0;
4. for(int i=x;i;i-=lowbit(i))
5. for(int j=y;j;j-=lowbit(j))
6. for(int k=z;k;k-=lowbit(k))
7. res^=arr[i][j][k];
8. return res;
9. }
10. inline void add(int x,int y,int z,int n){
11. for(int i=x;i<MAXN;i+=lowbit(i))
12. for(int j=y;j<MAXN;j+=lowbit(j))
13. for(int k=z;k<MAXN;k+=lowbit(k))
14. arr[i][j][k]+=n;
15. }
16. inline void update(int x1,int y1,int z1,int x2,int y2,int z2,int n){
17. add(x1,y1,z1,n);
18. add(x2+1,y1,z1,-n);add(x1,y2+1,z1,-n);add(x1,y1,z2+1,-n);
19. add(x2+1,y2+1,z1,n);add(x2+1,y1,z2+1,n);add(x1,y2+1,z2+1,n);
20. add(x2+1,y2+1,z2+1,-n);
21. }
22. inline int query(int x1,int y1,int z1,int x2,int y2,int z2){
23. return sum(x2,y2,z2)
24. -sum(x2,y2,z1-1)-sum(x2,y1-1,z2)-sum(x1-1,y2,z2)
25. +sum(x2,y1-1,z1-1)+sum(x1-1,y2,z1-1)+sum(x1-1,y1-1,z2)
26. -sum(x1-1,y1-1,z1-1);
27. }
⑥立方体增减(update) + 立方体求和(query)///随便写写……复杂度较高
[cpp]
view plain
copy
print
?
1. template<typename X>
2. class tree_array_Cube{
3. struct tree_array_single{
4. X arr[MAXN][MAXN][MAXN];
5. int x,int y,int z){
6. X res=0;
7. for(int i=x;i;i-=lowbit(i))
8. for(int j=y;j;j-=lowbit(j))
9. for(int k=z;k;k-=lowbit(k))
10. res+=arr[i][j][k];
11. return res;
12. }
13. void add(int x,int y,int z,X n){
14. for(int i=x;i<MAXN;i+=lowbit(i))
15. for(int j=y;j<MAXN;j+=lowbit(j))
16. for(int k=z;k<MAXN;k+=lowbit(k))
17. arr[i][j][k]+=n;
18. }
19. }T1,T2,T3,T4,T5,T6,T7,T8;
20. void add(int x,int y,int z,X n){
21. T1.add(x,y,z,n);
22. T2.add(x,y,z,x*n);T3.add(x,y,z,y*n);T4.add(x,y,z,z*n);
23. T5.add(x,y,z,x*y*n);T6.add(x,y,z,y*z*n);T7.add(x,y,z,x*z*n);
24. T8.add(x,y,z,x*y*z*n);
25. }
26. int x,int y,int z){
27. return (x+1)*(y+1)*(z+1)*T1.sum(x,y,z)
28. -(y+1)*(z+1)*T2.sum(x,y,z)-(x+1)*(z+1)*T3.sum(x,y,z)-(x+1)*(y+1)*T4.sum(x,y,z)
29. +(z+1)*T5.sum(x,y,z)+(x+1)*T6.sum(x,y,z)+(y+1)*T7.sum(x,y,z)-T8.sum(x,y,z);
30. }
31. public:
32. void init(){
33. CLR(T1.arr,0);CLR(T2.arr,0);CLR(T3.arr,0);CLR(T4.arr,0);
34. CLR(T5.arr,0);CLR(T6.arr,0);CLR(T7.arr,0);CLR(T8.arr,0);
35. }
36. void update(int x1,int y1,int z1,int x2,int y2,int z2,X n){
37. add(x1,y1,z1,n);
38. add(x2+1,y1,z1,-n);add(x1,y2+1,z1,-n); add(x1,y1,z2+1,-n);
39. add(x2+1,y2+1,z1,n);add(x2+1,y1,z2+1,n);add(x1,y2+1,z2+1,n);
40. add(x2+1,y2+1,z2+1,-n);
41. }
42. int x1,int y1,int z1,int x2,int y2,int z2){
43. return sum(x2,y2,z2)
44. -sum(x2,y2,z1-1)-sum(x2,y1-1,z2)-sum(x1-1,y2,z2)
45. +sum(x2,y1-1,z1-1)+sum(x1-1,y2,z1-1)+sum(x1-1,y1-1,z2)
46. -sum(x1-1,y1-1,z1-1);
47. }
48. };
16、树状数组—区间最大值
[cpp]
view plain
copy
print
?
1. inline void init()
2. {
3. CLR(arr,0);
4. for(int i=1;i<=N;++i)
5. for(int j=i;j<=N&&arr[j]<num[i];j+=lowbit(j))
6. arr[j]=num[i];
7. }
8. inline int query(int L,int R)
9. {
10. int res=0;
11. for(--L;L<R;){
12. if(R-lowbit(R)>=L){res=max(res,arr[R]);R-=lowbit(R);}
13. else{res=max(res,num[R]);--R;}
14. }
15. return res;
16. }
17. inline void update(int x,int val)
18. {
19. int ori=num[x];
20. num[x]=val;
21. if(val>=ori)
22. for(int i=x;i<=N&&arr[i]<val;i+=lowbit(i))
23. arr[i]=val;
24. else{
25. for(int i=x;i<=N&&arr[i]==ori;i+=lowbit(i))
26. {
27. arr[i]=val;
28. for(int j=lowbit(i)>>1;j;j>>=1)
29. arr[i]=max(arr[i],arr[i-j]);
30. }
31. }
32. }