目录

  • 摘要
  • 关键词
  • 0 引言
  • 1 在线预测与运动规划算法设计
  • (1) 在线预测
  • (2) 运动规划
  • (3) 动态跟踪及抓取
  • 2 动态跟踪算法设计
  • 3 实验验证
  • 3. 1 动态跟踪抓取实验
  • (1) 系统框架
  • (2) 动态跟踪抓取实验
  • 3. 2 融合轨迹连续性
  • 3. 3 动态跟踪鲁棒性
  • 4 结语


摘要

内容:基于ROS框架,以6自由度ABB机器人为研究对象,设计了一种基于在线预测规划的机器人动态跟踪抓取方法。
问题的提出与解决:

  1. 通过预先检测目标物的运动状态在线预测其运行轨迹
  2. 对预估轨迹进行运动规划得到机械臂的跟踪轨迹
  3. 实现机器人对移动目标物体进行动态跟踪抓取

针对问题

解决

ROS系统与机器人通信反馈机制造成机器人跟踪过程断续跟踪轨迹不连续

一种多轨迹融合方法,用于运动 规划融合多段轨迹,实现了机器人持续地跟踪移动物体

机器人对不同移动速度的目标物体跟踪不及时跟踪落后

一种运动规划模型,以物体预估轨迹的时间长度规划机械跟踪轨迹,解决了机器人动态跟踪滞后

传送带获取状态,并实现动态跟踪

关键词

  1. 动态跟踪;
  2. 轨迹规划;
  3. 多轨迹融合;
  4. 移动物体抓取;
  5. ROS

0 引言

ROS优点:(写论文引言可以借鉴,嘿嘿)

  1. 以点对点的设计;
  2. 多语言支持;
  3. 开源;
  4. 集成众多仿真工具包

之前学者工作如下:

学者

工作

Cowley 等

基于ROS系统采用3D视觉引导,使得PR2机器人成功抓取传送带上的物体

A. Cowley, B. Cohen, W. Marshall, C. J. Taylor and M. Likhachev. Perception and motion planning for pick-and-place of dynamic objects[J]. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: 816-823.

Menon 等

提出了基于搜索的运动规划算法,生成与目标物体的轨迹相匹配的PR2机器人运行轨迹

MENON A, COHEN B, LIKHACHEV M. Motion planning for smooth pickup of moving objects [J]. International Conference on Robotics and Automation, 2014:453-460.

Boschetti 等

提出一种路径规划技术,圆形输送机

G. Boschetti. A picking strategy for circular conveyor tracking [J]. International Conference on Mechatronic and Embedded Systems and Applications ( MESA) [J]. 2014, 10:1-6.

Shin 等

几何路径约束的机械臂最小时间控制算法,实现在最短时间内对传送带上物体的抓取和拦截

I. S. Shin, S. Nam, R. G. Roberts and S. B. Moon. Minimum Time Algorithm for Intercepting an Object on the Conveyor Belt by Robot [J]. 2007 International Symposium on Computational Intelligence in Robotics and Automation [J]. 2007: 362-367.

幸杰

采用 PI 控制算法以实时获得目标物机器人坐标

幸杰. 工业机器人运动工件跟踪抓取技术研究与实现 [D]. 重庆: 重庆大学, 2018.

Lan 等

提出了轨迹竞争多目标粒子群优化算法,搜索机器人最优轨迹的帕累托最优解集,完成多目标轨迹规划的方法

Lan, J. ; Xie, Y. ; Liu, G. ; Cao, M. A Multi-Objective Trajectory Planning Method for Collaborative Robot [J]. Electronics 2020, 9: 859.

张弛

一种运动物体跟踪算法,能够实现无障碍环境下移动物体的平滑抓取

张驰,尚伟伟,丛爽,刘宜. 机器人平滑抓取移动物体的运动规划方法 [J]. 机械工程学报,2018,54( 19) : 10-17.

通信反馈机制问题 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv

1 在线预测与运动规划算法设计

建立机械臂末端点传送带的坐标系
经过坐标转换矩阵统一在机械臂坐标系

机器人 抓取 位姿估计 opencv 机器人动态抓取原理_ci_02

  1. for 机械臂末端点:
    末端抓手中心点 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03 机械臂基坐标系 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03 正运动学模型推导
    抓手和机械臂末端同轴相连 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03 中心直线距离: 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_ci_06
  2. for 传送带:
    目标物体在传送带坐标系 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv_08
    传送带坐标系相对于机械臂基坐标系的变换矩阵 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03
    机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_10
    传送带坐标系相对于机械臂基坐标系的位姿 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03
    机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_12
    通过硬件设备获得并经坐标系转换后移动物体在基坐标系下的实时坐标

(1) 在线预测

  1. 移动物体在 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_ci_13
  2. 系统获得速度 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv_14
  3. 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_ci_13 时刻目标物所在 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_16 点为基准点,预估目标物 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_17 时刻在传送带坐标系中的位置
  4. 得到在机器人坐标系下的位姿 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_18

(2) 运动规划

快速扩展树算法

S. R. Martin, S. E. Wright and J. W. Sheppard. Offline and Online Evolutionary Bi-Directional RRT Algorithms for Efficient Re-Planning in Dynamic Environments [J].

五次样条插补算法进行轨迹插补

Yuhang Li, Tian Huang, Derek G. Chetwynd. An approach for smooth trajectory planning of highspeed pick-and-place parallel robots using quintic B-splines [J].

ROS系统与机器人之间采用 simple_message 协议,并存在通信反馈机制
机器人执行上位机指令结束后
机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03将机械臂关节信息反馈回上位机系统,以实现控制系统中机器人
的姿态同步
机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_20 系统与目标姿态无法实时跟踪
机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_20

  1. 生成过渡性轨迹:根据目标物体的位姿机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_22,生成机械臂末端抓手预备位置运动到 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_16
  2. 再生轨迹:根据目标物体的位姿机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_24,生成机械臂的第二段规划路径,即末端抓手从 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_25 位置到 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_26 位置的跟踪轨迹;两段跟踪轨迹是连续的,意味着末端抓手从 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_16 位置运行途经 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_25 位置到 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_26
  3. 依次规划机械臂剩下的轨迹,最终得到一条完整的连贯的机械臂跟踪轨迹;

(3) 动态跟踪及抓取

  1. 系统实时获得末端抓手 TCP 点与移动物体在基坐标系下的坐标值。
  2. 当机械臂和物体坐标满足机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv_30
  3. 末端抓手和物体之间的最大距离 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv_32
    末端抓手和目标物体之间的平移矢量 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_ci_34
    末端抓手和目标物体之间的旋转矢量 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_03
    机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_36

2 动态跟踪算法设计

目标物预估轨迹的时间长度来规划机械臂跟踪轨迹的时间长度

预估轨迹 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_37 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv 机械臂末端抓手到达传送带上某一点所需要的时间

预估轨迹 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_39 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv 目标物体到达机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv_41(传送带上某一点)所需要的时间

机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_42

机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_43


两曲线能相交 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv

机器人 抓取 位姿估计 opencv 机器人动态抓取原理_ci_45


机器人 抓取 位姿估计 opencv 机器人动态抓取原理_ci_46


机械臂末端抓手的运行轨迹分为三段

  1. A 段为加速运行轨迹;
  2. B 段为匀速运行轨迹;
  3. C 段为减速运行轨迹。

算法设计须保证机械臂末端抓手在运行至 B 段轨迹时目标物体实现动态跟踪相遇并抓取

机械臂在执行完第一段轨迹后才能抵达 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_47 位置,当末端抓手抵达 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_47 位置时,目标物体已从 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_47 位置( 坐标系机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv_41轴的起始点) 运行至之后位置。
机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv 相对于 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_52 而言,跟踪轨迹 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_53 落后于 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_52 一段时间 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_55
机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv 在引入时间差值机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂_55后,当两条轨迹的交点仍在B段之中,末端抓手才可实现稳定地动态跟踪抓取。

机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人 抓取 位姿估计 opencv_58


机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_59

3 实验验证

3. 1 动态跟踪抓取实验

(1) 系统框架

机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_60

(2) 动态跟踪抓取实验

传送带速度经编码器测得 机器人 抓取 位姿估计 opencv 机器人动态抓取原理_ci_61

目标物体和末端抓手 TCP 点在机器人基坐标系下的坐标如表所示

机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机器人_62


机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_63

3. 2 融合轨迹连续性

融合轨迹的连续性体现在机器人末端抓手在跟踪目标物体过程中是否存在轨迹停顿轨迹速度是否连续

由ROS系统下发到控制柜的关节轨迹信息是组成跟踪轨迹的多个路径点的机械臂六轴控制参数值,每个路径点六轴的参数包含控制各轴转动的时间值转动角度转动速度以及转动加速度等信息。

机器人 抓取 位姿估计 opencv 机器人动态抓取原理_ci_64

3. 3 动态跟踪鲁棒性

机器人 抓取 位姿估计 opencv 机器人动态抓取原理_机械臂抓取_65


实验证明在一定传送带速度范围内,机械臂对不同移动速度的目标物体可实现稳定地动态跟踪抓取,实验结果取得了良好的效果,验证了以预估轨迹的时间度量来规划机械臂跟踪轨迹模型,即动态跟踪的鲁棒性。

4 结语