百度训练营之-基于PaddlePaddle的手写数字识别程序理解
- 这段时间参加了下百度的一个训练营,了解了下Paddle的基本使用过程,感觉有点儿像tensorflow1.x的版本,整个界面和notebook基本一样;不过他这个平台现在免费送算力和时长,配置的显卡也挺高的(我这次是特斯拉V100),基本的版本控制也有,还有自己的终端,如果自己计算机的配置不高,Paddle平台也是一个不错的选择
- Paddle的注册和安装
- 基于Paddle的手写数字识别程序
这段时间参加了下百度的一个训练营,了解了下Paddle的基本使用过程,感觉有点儿像tensorflow1.x的版本,整个界面和notebook基本一样;不过他这个平台现在免费送算力和时长,配置的显卡也挺高的(我这次是特斯拉V100),基本的版本控制也有,还有自己的终端,如果自己计算机的配置不高,Paddle平台也是一个不错的选择
Paddle的注册和安装
1、直接搜索aistudio,进入官网然后注册之后就可以有一个配置好的notebook可以使用了,现在随便运行一个程序就可以有12小时的免费算力;
2、如果要安装到本地机上,和安装其他包一样的,直接pip install PaddlePaddle就可以;
3、进入到编程界面的操作都是大同小异,这里就不细说,直接上代码,基于代码加深自己对paddle创建模型的理解,同时记录下自己现在的疑惑,后面在逐步加深理解;
4、本文的代码基本上直接搬运官网的实例,官网实例可直接参考:https://aistudio.baidu.com/aistudio/projectdetail/296866
基于Paddle的手写数字识别程序
1、万年不变的导包
#导入需要的包
import numpy as np
import paddle as paddle
import paddle.fluid as fluid
from PIL import Image
import matplotlib.pyplot as plt
import os
2、数据准备
Paddle自带了mnis的数据借口,可以直接调用
BUF_SIZE=512
BATCH_SIZE=128
#用于训练的数据提供器,每次从缓存中随机读取批次大小的数据
#首次运行需要时间下载数据
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.mnist.train(),
buf_size=BUF_SIZE),
batch_size=BATCH_SIZE)
#用于训练的数据提供器,每次从缓存中随机读取批次大小的数据
test_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.mnist.test(),
buf_size=BUF_SIZE),
batch_size=BATCH_SIZE)
3、模型网络配置
本文的模型较为简单,直接定义两个大小为100的隐层和一个大小为10的输出层
# 定义多层感知器
def multilayer_perceptron(input):
# 第一个全连接层,激活函数为ReLU
hidden1 = fluid.layers.fc(input=input, size=100, act='relu')
# 第二个全连接层,激活函数为ReLU
hidden2 = fluid.layers.fc(input=hidden1, size=100, act='relu')
# 以softmax为激活函数的全连接输出层,输出层的大小必须为数字的个数10
prediction = fluid.layers.fc(input=hidden2, size=10, act='softmax')
return prediction
4、定义数据层及优化器
# 输入的原始图像数据,大小为1*28*28
image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')#单通道,28*28像素值
# 标签,名称为label,对应输入图片的类别标签
label = fluid.layers.data(name='label', shape=[1], dtype='int64') #图片标签
# 获取分类器
predict = multilayer_perceptron(image)
5、定义损失函数及优化器
#使用交叉熵损失函数,描述真实样本标签和预测概率之间的差值
cost = fluid.layers.cross_entropy(input=predict, label=label)
# 使用类交叉熵函数计算predict和label之间的损失函数
avg_cost = fluid.layers.mean(cost)
# 计算分类准确率
acc = fluid.layers.accuracy(input=predict, label=label)
#使用Adam算法进行优化, learning_rate 是学习率(它的大小与网络的训练收敛速度有关系)
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
按照官网的说法,上述模型配置到这里之后会有两个program,其实这个也是我一直没有太理解的地方,没有理解program的具体作用和优势
6、模型训练准备
# 定义使用CPU还是GPU,使用CPU时use_cuda = False,使用GPU时use_cuda = True
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
# 获取测试程序
test_program = fluid.default_main_program().clone(for_test=True)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
#run这个操作我觉是最像tf1.x的一个地方
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
#类似feeder的操作在tf2.0中一般在读数据的时候做了,这里个人理解的是可能是为了保证模型搭建的完整性
#定义绘图函数
all_train_iter=0
all_train_iters=[]
all_train_costs=[]
all_train_accs=[]
def draw_train_process(title,iters,costs,accs,label_cost,lable_acc):
plt.title(title, fontsize=24)
plt.xlabel("iter", fontsize=20)
plt.ylabel("cost/acc", fontsize=20)
plt.plot(iters, costs,color='red',label=label_cost)
plt.plot(iters, accs,color='green',label=lable_acc)
plt.legend()
plt.grid()
plt.show()
7、模型训练及保存
EPOCH_NUM=2
model_save_dir = "/home/aistudio/work/hand.inference.model"
for pass_id in range(EPOCH_NUM):
# 进行训练
for batch_id, data in enumerate(train_reader()): #遍历train_reader
train_cost, train_acc = exe.run(program=fluid.default_main_program(),#运行主程序
feed=feeder.feed(data), #给模型喂入数据
fetch_list=[avg_cost, acc]) #fetch 误差、准确率
all_train_iter=all_train_iter+BATCH_SIZE
all_train_iters.append(all_train_iter)
all_train_costs.append(train_cost[0])
all_train_accs.append(train_acc[0])
# 每200个batch打印一次信息 误差、准确率
if batch_id % 200 == 0:
print('Pass:%d, Batch:%d, Cost:%0.5f, Accuracy:%0.5f' %
(pass_id, batch_id, train_cost[0], train_acc[0]))
# 进行测试
test_accs = []
test_costs = []
#每训练一轮 进行一次测试
for batch_id, data in enumerate(test_reader()): #遍历test_reader
test_cost, test_acc = exe.run(program=test_program, #执行训练程序
feed=feeder.feed(data), #喂入数据
fetch_list=[avg_cost, acc]) #fetch 误差、准确率
test_accs.append(test_acc[0]) #每个batch的准确率
test_costs.append(test_cost[0]) #每个batch的误差
# 求测试结果的平均值
test_cost = (sum(test_costs) / len(test_costs)) #每轮的平均误差
test_acc = (sum(test_accs) / len(test_accs)) #每轮的平均准确率
print('Test:%d, Cost:%0.5f, Accuracy:%0.5f' % (pass_id, test_cost, test_acc))
#保存模型
# 如果保存路径不存在就创建
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
print ('save models to %s' % (model_save_dir))
fluid.io.save_inference_model(model_save_dir, #保存推理model的路径
['image'], #推理(inference)需要 feed 的数据
[predict], #保存推理(inference)结果的 Variables
exe) #executor 保存 inference model
print('训练模型保存完成!')
draw_train_process("training",all_train_iters,all_train_costs,all_train_accs,"trainning cost","trainning acc")
训练过程的输入的损失函数和ACC的变化如下图:
8、模型预测
def load_image(file):
im = Image.open(file).convert('L') #将RGB转化为灰度图像,L代表灰度图像,像素值在0~255之间
im = im.resize((28, 28), Image.ANTIALIAS) #resize image with high-quality 图像大小为28*28
im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)#返回新形状的数组,把它变成一个 numpy 数组以匹配数据馈送格式。
# print(im)
im = im / 255.0 * 2.0 - 1.0 #归一化到【-1~1】之间
return im
infer_path='/home/aistudio/data/data1910/infer_3.png'#这个是随便找的一张黑底白字的手写数字
img = Image.open(infer_path)
#创建执行器
infer_exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
#这里这个scope也没有理解是干啥的
```# 加载数据并开始预测
with fluid.scope_guard(inference_scope):
#获取训练好的模型
#从指定目录中加载 推理model(inference model)
[inference_program, #推理Program
feed_target_names, #是一个str列表,它包含需要在推理 Program 中提供数据的变量的名称。
fetch_targets] = fluid.io.load_inference_model(model_save_dir,#fetch_targets:是一个 Variable 列表,从中我们可以得到推断结果。model_save_dir:模型保存的路径
infer_exe) #infer_exe: 运行 inference model的 executor
img = load_image(infer_path)
results = infer_exe.run(program=inference_program, #运行推测程序
feed={feed_target_names[0]: img}, #喂入要预测的img
fetch_list=fetch_targets) #得到推测结果,
# 获取概率最大的label
lab = np.argsort(results) #argsort函数返回的是result数组值从小到大的索引值
#print(lab)
print("该图片的预测结果的label为: %d" % lab[0][0][-1]) #-1代表读取数组中倒数第一列
输入的图片为:
最终输出结果:该图片的预测结果的label为: 3
参考链接:
[1]: https://aistudio.baidu.com/aistudio/projectdetail/296866