第一阶段:全员生产系统(TPS)。由日本提出来的,建立的5S 标准(整理、整顿、清扫、清洁、素养)是七八十年代整个制造系统当中引以为核心的标准,固化在了组织和对人培训方面。
第二阶段:精益制造和6-Sigma。它的核心价值是如何以数据作为标准建立管理体系,本质是消除浪费。
在这个基础下面包括质量管理体系、产品全生命周期管理体系等等。这个时候数据真正在制造使用过程中发挥作用。
第三阶段:数据驱动的预测性建模分析。以数据驱动的预测性建模分析,指的是怎么把隐性的问题显性化,显性化之后解决隐性的问题,避免显性问题的发生。
第四阶段:以预测为基础的资源有效性运营决策优化。对于过去产生的关联性都能够建模之后,怎么根据系统生产、环境、人员多方要素变化进行实时动态优化。
第五阶段:“信息-物理”系统。它是建立在对于所有设备本身运行的环境、活动目标非常精确建模基础上,这个时候产生知识的应用和传承问题。
智能制造最终要具备状态感知、实时分析、自主决策、精准执行的特征,使得企业更柔性、更智能、更集成化,并且实现了大部分或者全部的智能化技术应用, 目标是实现知识的获取、规模化利用与传承。
第一阶段:全员生产系统(TPS)。由日本提出来的,建立的5S 标准(整理、整顿、清扫、清洁、素养)是七八十年代整个制造系统当中引以为核心的标准,固化在了组织和对人培训方面。
第二阶段:精益制造和6-Sigma。它的核心价值是如何以数据作为标准建立管理体系,本质是消除浪费。
在这个基础下面包括质量管理体系、产品全生命周期管理体系等等。这个时候数据真正在制造使用过程中发挥作用。
第三阶段:数据驱动的预测性建模分析。以数据驱动的预测性建模分析,指的是怎么把隐性的问题显性化,显性化之后解决隐性的问题,避免显性问题的发生。
第四阶段:以预测为基础的资源有效性运营决策优化。对于过去产生的关联性都能够建模之后,怎么根据系统生产、环境、人员多方要素变化进行实时动态优化。
第五阶段:“信息-物理”系统。它是建立在对于所有设备本身运行的环境、活动目标非常精确建模基础上,这个时候产生知识的应用和传承问题。
智能制造最终要具备状态感知、实时分析、自主决策、精准执行的特征,使得企业更柔性、更智能、更集成化,并且实现了大部分或者全部的智能化技术应用, 目标是实现知识的获取、规模化利用与传承。