机器学习——主成分分析法(PCA)


文章目录

  • 机器学习——主成分分析法(PCA)
  • 一、主成分分析的概念
  • 二、主成分分析的步骤
  • 三、主成分分析PCA的简单实现
  • 四、手写体识别数字降维


一、主成分分析的概念

主成分分析(PCA)是一种常用的数据降维方法,可以将高维数据转换为低维空间,同时保留原始数据中最具代表性的信息。在数学建模中,PCA可以应用于多个领域,例如金融、医学、自然语言处理等。
主成分析python代码 主成分分析python应用_机器学习
在实际的数学建模中,降维操作是很常用的。

比如在图像处理中,如果要识别人脸,需要将每张图像表示为一个向量,每个元素代表图像中某个像素点的灰度值。由于每张图像的像素数量很大,可能成百上千万甚至更多,这会导致计算和存储成本非常高。

主成分析python代码 主成分分析python应用_主成分析python代码_02

在这种情况下,可以使用PCA对这些向量进行降维,将每张图像表示为一个包含较少元素的向量,从而使得计算和存储成本大大降低。同时,PCA还能够从这些低维向量中提取出最具代表性的信息,以便于后续s的人脸识别任务。

主成分析python代码 主成分分析python应用_python_03

二、主成分分析的步骤

1、数据预处理

中心化
主成分析python代码 主成分分析python应用_数据_04
2、求样本的协方差矩阵
主成分析python代码 主成分分析python应用_数据_05
其中协方差描述两个数据的相关性,接近1为正相关,接近-1为负相关,接近0为不相关。两个数据的协方差计算公式如下:
主成分析python代码 主成分分析python应用_数据_06
3、对协方差矩阵做特征值分解

4、选出最大的K个特征值对应的K个特征向量

5、将原始数据投影到选取的特征向量上

6、输出投影后的数据集

三、主成分分析PCA的简单实现

首先我们有一个二维数据长这样

32.50234527

31.70700585

53.42680403

68.77759598

61.53035803

62.5623823

47.47563963

71.54663223

59.81320787

87.23092513

55.14218841

78.21151827

52.21179669

79.64197305

39.29956669

59.17148932

48.10504169

75.3312423

52.55001444

71.30087989

我们需要将这个二维数据变为一维数据

代码如下:

1、首先载入数据查看我们数据的分布情况

import numpy as np
import matplotlib.pyplot as plt
data = np.genfromtxt("data.csv", delimiter=",")
x_data = data[:,0]
y_data = data[:,1]
plt.scatter(x_data,y_data)
plt.show()
print(x_data.shape)

主成分析python代码 主成分分析python应用_机器学习_07

对应上面的步骤和公式,将数据中心化

def zeroMean(dataMat):
    # 按列求平均,即各个特征的平均
    meanVal = np.mean(dataMat, axis=0) 
    newData = dataMat - meanVal
    return newData, meanVal

2、求协方差矩阵

newData,meanVal=zeroMean(data)  
# np.cov用于求协方差矩阵,参数rowvar=0说明数据一行代表一个样本
covMat = np.cov(newData, rowvar=0)

3、求矩阵的特征值和特征向量

eigVals, eigVects = np.linalg.eig(np.mat(covMat))

4、对特征值排序

eigValIndice = np.argsort(eigVals)

5、取最大的top个特征值下标

n_eigValIndice = eigValIndice[-1:-(top+1):-1]

最大的n个特征值对应的特征向量

n_eigVect = eigVects[:,n_eigValIndice]
lowDDataMat = newData*n_eigVect
reconMat = (lowDDataMat*n_eigVect.T) + meanVal

6、特征空间的数据

data = np.genfromtxt("data.csv", delimiter=",")
x_data = data[:,0]
y_data = data[:,1]
plt.scatter(x_data,y_data)

# 重构的数据
x_data = np.array(reconMat)[:,0]
y_data = np.array(reconMat)[:,1]
plt.scatter(x_data,y_data,c='r')
plt.show()

主成分析python代码 主成分分析python应用_主成分析python代码_08

四、手写体识别数字降维

引入sklearn中的手写数字识别

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix
import numpy as np
import matplotlib.pyplot as plt

接下来代码如下

digits = load_digits()#载入数据
x_data = digits.data #数据
y_data = digits.target #标签

x_train,x_test,y_train,y_test = train_test_split(x_data,y_data) #分割数据1/4为测试数据,3/4为训练数据
mlp = MLPClassifier(hidden_layer_sizes=(100,50) ,max_iter=500)
mlp.fit(x_train,y_train)
# 数据中心化
def zeroMean(dataMat):
    # 按列求平均,即各个特征的平均
    meanVal = np.mean(dataMat, axis=0) 
    newData = dataMat - meanVal
    return newData, meanVal

def pca(dataMat,top):
    # 数据中心化
    newData,meanVal=zeroMean(dataMat) 
    # np.cov用于求协方差矩阵,参数rowvar=0说明数据一行代表一个样本
    covMat = np.cov(newData, rowvar=0)
    # np.linalg.eig求矩阵的特征值和特征向量
    eigVals, eigVects = np.linalg.eig(np.mat(covMat))
    # 对特征值从小到大排序
    eigValIndice = np.argsort(eigVals)
    # 最大的n个特征值的下标
    n_eigValIndice = eigValIndice[-1:-(top+1):-1]
    # 最大的n个特征值对应的特征向量
    n_eigVect = eigVects[:,n_eigValIndice]
    # 低维特征空间的数据
    lowDDataMat = newData*n_eigVect
    # 利用低纬度数据来重构数据
    reconMat = (lowDDataMat*n_eigVect.T) + meanVal
    # 返回低维特征空间的数据和重构的矩阵
    return lowDDataMat,reconMat 
lowDDataMat,reconMat = pca(x_data,2)
# 重构的数据
x = np.array(lowDDataMat)[:,0]
y = np.array(lowDDataMat)[:,1]
plt.scatter(x,y,c='r')
plt.show()
predictions = mlp.predict(x_data)
# 重构的数据
x = np.array(lowDDataMat)[:,0]
y = np.array(lowDDataMat)[:,1]
plt.scatter(x,y,c=y_data)
plt.show()
lowDDataMat,reconMat = pca(x_data,3)
from mpl_toolkits.mplot3d import Axes3D  
x = np.array(lowDDataMat)[:,0]
y = np.array(lowDDataMat)[:,1]
z = np.array(lowDDataMat)[:,2]
ax = plt.figure().add_subplot(111, projection = '3d') 
ax.scatter(x, y, z, c = y_data, s = 10) #点为红色三角形 
plt.show()

主成分析python代码 主成分分析python应用_机器学习_09