目录
分布式服务的事务问题
分布式事务的理论基础
CAP定理
Base理论
分布式事务模型
Seata
seata架构
微服务集成seata
XA模式
AT模式
AT模式的读写隔离问题
AT模式的脏写问题
TCC模式
TCC的空回滚和业务悬挂
SAGA模式
四种模式的对比
高可用
分布式服务的事务问题
现在有如下案例:
微服务下单业务,在下单时会调用订单服务,创建订单并写入数据库。然后订单服务调用账户服务和库存服务:
- •账户服务负责扣减用户余额
- 库存服务负责扣减商品库存
在分布式系统下,一个业务跨越多个服务或数据源,每个服务都是一个分支事务,要保证所有分支事务最终状态一致,这样的事务就是分布式事务。
分布式事务的理论基础
CAP定理
1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标:
- Consistency(一致性)
- Availability(可用性)
- Partition tolerance (分区容错性)
Eric Brewer 说,分布式系统无法同时满足这三个指标。
这个结论就叫做 CAP 定理。
Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。
Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。
Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。
Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务。
Base理论
BASE理论是对CAP的一种解决思路,包含三个思想:
- Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
- Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态。
- Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。
而分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论:
- AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。
- CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。
分布式事务模型
解决分布式事务,各个子系统之间必须能感知到彼此的事务状态,才能保证状态一致,因此需要一个事务协调者来协调每一个事务的参与者(子系统事务)。
这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务
Seata
seata架构
Seata事务管理中有三个重要的角色:
- TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。
- TM (Transaction Manager) - 事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。
- RM (Resource Manager) - 资源管理器:管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
Seata提供了四种不同的分布式事务解决方案:
- XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
- TCC模式:最终一致的分阶段事务模式,有业务侵入
- AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
- SAGA模式:长事务模式,有业务侵入
微服务集成seata
XA模式
XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
seata的XA模式做了一些调整,但大体相似:
RM一阶段的工作:
- 注册分支事务到TC
- 执行分支业务sql但不提交
- 报告执行状态到TC
TC二阶段的工作:
TC 检测各分支事务执行状态
- a.如果都成功,通知所有RM提交事务
- b.如果有失败,通知所有RM回滚事务
RM二阶段的工作:
- 接收TC指令,提交或回滚事务
XA模式的优点是什么?
- 事务的强一致性,满足ACID原则。
- 常用数据库都支持,实现简单,并且没有代码侵入
XA模式的缺点是什么?
- 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
- 依赖关系型数据库实现事务
AT模式
AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。
阶段一RM的工作:
- 注册分支事务
- 记录undo-log(数据快照)
- 执行业务sql并提交
- 报告事务状态
阶段二提交时RM的工作:
- 删除undo-log即可
阶段二回滚时RM的工作:
- 根据undo-log恢复数据到更新前
简述AT模式与XA模式最大的区别是什么?
- XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
- XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
- XA模式强一致;AT模式最终一致
AT模式的读写隔离问题
AT模式的脏写问题
全局锁:由TC记录当前正在操作某行数据的事务,该事务持有全局锁,具备执行权。
AT模式的优点:
- 一阶段完成直接提交事务,释放数据库资源,性能比较好
- 利用全局锁实现读写隔离
- 没有代码侵入,框架自动完成回滚和提交
AT模式的缺点:
- 两阶段之间属于软状态,属于最终一致
- 框架的快照功能会影响性能,但比XA模式要好很多
TCC模式
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
- Try:资源的检测和预留;
- Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
- Cancel:预留资源释放,可以理解为try的反向操作。
举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。
- 阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30
- 阶段二:假如要提交(Confirm),则冻结金额扣减30
- 阶段二:如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30
TCC模式的每个阶段是做什么的?
- Try:资源检查和预留
- Confirm:业务执行和提交
- Cancel:预留资源的释放
TCC的优点是什么?
- 一阶段完成直接提交事务,释放数据库资源,性能好
- 相比AT模型,无需生成快照,无需使用全局锁,性能最强
- 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库
TCC的缺点是什么?
- 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
- 软状态,事务是最终一致
- 需要考虑Confirm和Cancel的失败情况,做好幂等处理
TCC的空回滚和业务悬挂
当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。对于已经空回滚的业务,如果以后继续执行try,就永远不可能confirm或cancel,这就是业务悬挂。应当阻止执行空回滚后的try操作,避免悬挂
为了实现空回滚、防止业务悬挂,以及幂等性要求。我们必须在数据库记录冻结金额的同时,记录当前事务id和执行状态,为此我们设计了一张表:
SAGA模式
Saga模式是SEATA提供的长事务解决方案。也分为两个阶段:
- 一阶段:直接提交本地事务
- 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚
Saga模式优点:
- 事务参与者可以基于事件驱动实现异步调用,吞吐高
- 一阶段直接提交事务,无锁,性能好
- 不用编写TCC中的三个阶段,实现简单
缺点:
- 软状态持续时间不确定,时效性差
没有锁,没有事务隔离,会有脏写
四种模式的对比
高可用
TC服务作为Seata的核心服务,一定要保证高可用和异地容灾。