简介

一个质点从t=0出发,随着时间有不同的构形,运动的描述是运动学。

所以需要建立运动方程来表征连续体是如何演化及其性质(例如位移、速度、加速度、质量密度、温度等)如何随时间变化

初始构形 或者 参考构形: vtkMassProperties 连续体积计算原理_正交变换

当前构形: vtkMassProperties 连续体积计算原理_笔记_02

vtkMassProperties 连续体积计算原理_正交变换_03


从描述单个质点的运动开始

研究在变形当中质点之间的相对距离

定义变形和应变张量,在这之前先定义连续性质

连续介质

任何介质都有质量

如果连续体在任何地方性质一致,被称为齐次的

考虑某个点P为中心的球作为初始构形:

vtkMassProperties 连续体积计算原理_正交变换_04

体积: vtkMassProperties 连续体积计算原理_标量_05

质量: vtkMassProperties 连续体积计算原理_点乘_06

那么,质量密度:

vtkMassProperties 连续体积计算原理_点乘_07


质点: 一个微小体积元,所具有的确定的性质,例如 质量密度、速度、温度等

点: 空间中的一个点

质点迹线: 单个质点运动过程中的轨迹

vtkMassProperties 连续体积计算原理_正交变换_08

运动的类型

刚体运动:保持原来的构形,表征为质点之间的距离保持一致;可以分类为:位移和旋转

带变形的运动:表征为质点之间的距离会发生变化

刚体运动

建立运动方程,直角坐标系 vtkMassProperties 连续体积计算原理_点乘_09

另一个直角坐标系 vtkMassProperties 连续体积计算原理_正交变换_10 表示正交基 vtkMassProperties 连续体积计算原理_点乘_11

vtkMassProperties 连续体积计算原理_笔记_12


质点P在坐标系 vtkMassProperties 连续体积计算原理_笔记_13vtkMassProperties 连续体积计算原理_标量_14 的位置向量为 vtkMassProperties 连续体积计算原理_正交变换_15vtkMassProperties 连续体积计算原理_正交变换_16

那么:

vtkMassProperties 连续体积计算原理_笔记_17

其中 vtkMassProperties 连续体积计算原理_笔记_18 与时间相关,描述的是坐标系 vtkMassProperties 连续体积计算原理_标量_14 的位移运动

下标表示:

vtkMassProperties 连续体积计算原理_点乘_20


vtkMassProperties 连续体积计算原理_正交变换_10的分量 可以点乘 vtkMassProperties 连续体积计算原理_笔记_13 得到:

vtkMassProperties 连续体积计算原理_点乘_23


其中 vtkMassProperties 连续体积计算原理_笔记_24 表示从坐标系 vtkMassProperties 连续体积计算原理_标量_14 到坐标系 vtkMassProperties 连续体积计算原理_笔记_13

并且 vtkMassProperties 连续体积计算原理_笔记_27vtkMassProperties 连续体积计算原理_正交变换_28

考虑 vtkMassProperties 连续体积计算原理_正交变换_29 , 那么:
vtkMassProperties 连续体积计算原理_点乘_30

NOTE: 分量的变换定律和正交变换密切相关,但它们有着完全不同的含义

问题2.1 一个连续体是以b为边的正方形,受到一个刚体运动,这个刚体运动是以逆时针旋转30°的旋转运动,求出运动方程,并求出质点D的新的位置

vtkMassProperties 连续体积计算原理_正交变换_31


vtkMassProperties 连续体积计算原理_正交变换_32

vtkMassProperties 连续体积计算原理_笔记_33, 所以空间坐标系和质点坐标系重叠了

vtkMassProperties 连续体积计算原理_笔记_34

构形的类型

参考构形 或者 初始构形: 在时间 vtkMassProperties 连续体积计算原理_正交变换_35, 即未变形之前的构形,质点P的位置向量为 vtkMassProperties 连续体积计算原理_正交变换_36

当前构形 或者 变形构形: 在时间 vtkMassProperties 连续体积计算原理_点乘_37

运动可以表征为一个双射函数 vtkMassProperties 连续体积计算原理_笔记_38 ,这可以保证存在逆函数 vtkMassProperties 连续体积计算原理_正交变换_39

vtkMassProperties 连续体积计算原理_正交变换_40

质量密度

当前构形的质量密度:

vtkMassProperties 连续体积计算原理_笔记_41


质量密度是一个标量场,是一个关于位置和时间的函数: vtkMassProperties 连续体积计算原理_标量_42

vtkMassProperties 连续体积计算原理_笔记_43

运动的描述

质点和空间坐标系

质量体 vtkMassProperties 连续体积计算原理_点乘_44

在任意时间,质量体会占据一个新的空间 vtkMassProperties 连续体积计算原理_笔记_45

vtkMassProperties 连续体积计算原理_笔记_46


质点P在参考构形,时间t=0的位置向量为:

vtkMassProperties 连续体积计算原理_正交变换_47

定义质点坐标系:

vtkMassProperties 连续体积计算原理_标量_48


质点P在当前构形位于位置 P’, 位置向量为:

vtkMassProperties 连续体积计算原理_标量_49

其中,定义了空间坐标系:

vtkMassProperties 连续体积计算原理_正交变换_50

位移向量

位移向量定义为当前构形的位置向量vtkMassProperties 连续体积计算原理_正交变换_16 和参考构形的位置向量 vtkMassProperties 连续体积计算原理_正交变换_15的差:

vtkMassProperties 连续体积计算原理_正交变换_53

速度向量

定义为位置向量的变化率:

vtkMassProperties 连续体积计算原理_点乘_54

加速度向量

定义为速度向量的变化率:

vtkMassProperties 连续体积计算原理_点乘_55

拉格朗日描述和欧拉描述

连续的性质:质量密度、温度、速度、加速度是质点固有的,这些性质可以随着时间变化,连续运动可以表征为一个双射的函数vtkMassProperties 连续体积计算原理_笔记_38 和逆函数 vtkMassProperties 连续体积计算原理_正交变换_57

这保证了我们可以联系当前构形和参考构形之间的连续性质

运动的拉格朗日描述

用质点坐标系 vtkMassProperties 连续体积计算原理_正交变换_15 表示的质点运动:

vtkMassProperties 连续体积计算原理_点乘_59

这个运动方程被称为拉格朗日运动描述

这个方程给出了在当前时刻 t 的位置 vtkMassProperties 连续体积计算原理_正交变换_16, 其中质点在时刻 vtkMassProperties 连续体积计算原理_正交变换_61 占据着位置 vtkMassProperties 连续体积计算原理_正交变换_15

上面的方程如果应用于某个质点P, 则该方程描述的是这个质点的迹线

运动的欧拉描述

用空间坐标系 vtkMassProperties 连续体积计算原理_正交变换_16表示的质点运动:

vtkMassProperties 连续体积计算原理_笔记_64


这个方程给出了在初始时刻 vtkMassProperties 连续体积计算原理_标量_65 的初始位置 vtkMassProperties 连续体积计算原理_正交变换_15, 该质点在当前时刻 vtkMassProperties 连续体积计算原理_笔记_67 具有坐标 vtkMassProperties 连续体积计算原理_笔记_68

vtkMassProperties 连续体积计算原理_标量_69


vtkMassProperties 连续体积计算原理_标量_70时刻有: vtkMassProperties 连续体积计算原理_标量_71

质点P的迹线:
vtkMassProperties 连续体积计算原理_正交变换_72

不同时刻在点P的质点:
vtkMassProperties 连续体积计算原理_点乘_73

其中 vtkMassProperties 连续体积计算原理_点乘_74 表示 在时刻 vtkMassProperties 连续体积计算原理_正交变换_75 位于点vtkMassProperties 连续体积计算原理_正交变换_76的质点为S,其初始位置为 vtkMassProperties 连续体积计算原理_标量_77

存在逆的充分必要条件是:雅可比行列式不为0

vtkMassProperties 连续体积计算原理_正交变换_78


**不可穿透性公理:**两个粒子不能同时占据同一位置。如后所述,当雅可比行列式为正时,这个条件是确定的

拉格朗日变量和欧拉变量

在连续体 vtkMassProperties 连续体积计算原理_笔记_79 上的物理量 vtkMassProperties 连续体积计算原理_笔记_80

拉格朗日形式 : vtkMassProperties 连续体积计算原理_正交变换_81

欧拉形式: vtkMassProperties 连续体积计算原理_正交变换_82

vtkMassProperties 连续体积计算原理_正交变换_83

问题2.2 考虑以下拉格朗日描述的运动方程:

vtkMassProperties 连续体积计算原理_标量_84


vtkMassProperties 连续体积计算原理_点乘_85


vtkMassProperties 连续体积计算原理_正交变换_86

质点时间导数

随时间变化的导数: vtkMassProperties 连续体积计算原理_点乘_87

跟着质点P运动并且记录随着时间变化的温度

vtkMassProperties 连续体积计算原理_笔记_88


如果属性是由拉格朗日描述:

vtkMassProperties 连续体积计算原理_标量_89

这种情况下,质点的时间导数表示为:

vtkMassProperties 连续体积计算原理_正交变换_90

这个属性是由质点坐标系描述的,意味着该属性与同一个质点运动过程相连接

如果属性是由欧拉描述:
vtkMassProperties 连续体积计算原理_点乘_91

观察不再跟踪质点P,而是固定在某个点vtkMassProperties 连续体积计算原理_笔记_68,观察经过的质点

vtkMassProperties 连续体积计算原理_笔记_93


在时刻 vtkMassProperties 连续体积计算原理_正交变换_75: 观测到质点Q的属性

在时刻 vtkMassProperties 连续体积计算原理_点乘_95: 观测到质点R的属性

在时刻 vtkMassProperties 连续体积计算原理_正交变换_96: 观测到质点P的属性

需要强调的是质点的时间导数与质点的固有属性关于时间的导数有关,例如,这是关于同一个质点的

然而,一个固定在某个点的观察者,只能得到当地的变化率的信息
为了得到完整的信息,我们需要知道质点沿着迹线其属性是怎么变化的,而这个额外的信息被称为对流的变化率,这与质量输运有关

所以,为了得到质点的时间导数,必须考虑以下两项:

  • 当地变化率
  • 对流变化率
    所以:

质点速度: vtkMassProperties 连续体积计算原理_笔记_97

欧拉描述: vtkMassProperties 连续体积计算原理_点乘_98

可以定义欧拉描述下的时间导数算子:vtkMassProperties 连续体积计算原理_标量_99
vtkMassProperties 连续体积计算原理_正交变换_100

下标形式:

vtkMassProperties 连续体积计算原理_点乘_101

欧拉描述的速度和加速度

质点P的速度:

vtkMassProperties 连续体积计算原理_笔记_102


这是拉格朗日描述

为了得到欧拉描述,需要代入运动逆方程:
vtkMassProperties 连续体积计算原理_标量_103

质点的加速度:

vtkMassProperties 连续体积计算原理_笔记_104


欧拉描述可以用逆方程代入得到或者通过应用欧拉描述的质点时间导数的定义

vtkMassProperties 连续体积计算原理_正交变换_105


欧拉加速度的矩阵形式:

vtkMassProperties 连续体积计算原理_标量_106


回到问题2.2欧拉速度场:

vtkMassProperties 连续体积计算原理_标量_107


那么,欧拉加速度也可以用定义得到:

vtkMassProperties 连续体积计算原理_标量_108


加速的各个分量如下:

vtkMassProperties 连续体积计算原理_标量_109


与问题2.2得到的结果一样

定常场

一个场 vtkMassProperties 连续体积计算原理_笔记_110 是定常的,如果其当地变化率不随时间发生变化:

vtkMassProperties 连续体积计算原理_标量_111


定常的速度场: 在时刻vtkMassProperties 连续体积计算原理_正交变换_75 和时刻 vtkMassProperties 连续体积计算原理_点乘_95 不发生改变

vtkMassProperties 连续体积计算原理_正交变换_114


然而,这不意味着质点的速度在场当中不随时间变化

在固定的空间点 vtkMassProperties 连续体积计算原理_正交变换_115
质点Q在时刻vtkMassProperties 连续体积计算原理_正交变换_75 以速度vtkMassProperties 连续体积计算原理_正交变换_117通过点Q, 此时另一个质点P的速度为 vtkMassProperties 连续体积计算原理_正交变换_118

质点P在时刻vtkMassProperties 连续体积计算原理_点乘_95 通过点vtkMassProperties 连续体积计算原理_正交变换_120, 由于是定常场,所以 vtkMassProperties 连续体积计算原理_标量_121
所以,在定常场,质点的速度是可以发生改变的

那么,质点速度的时间导数为:

vtkMassProperties 连续体积计算原理_标量_122


由于定常场,所以速度的变化率(加速度)为0, 如果是定常场vtkMassProperties 连续体积计算原理_笔记_123且均匀的(vtkMassProperties 连续体积计算原理_点乘_124

同样地,可以验证虽然空间速度与时间无关,但这不意味着物质速度也是,例如:
vtkMassProperties 连续体积计算原理_笔记_125

流线

在时刻 t 给定一个空间速度场,可以定义流线为:每个点的切线与速度的方向相同所组成的曲线

一般情况下:流线和迹线并不重合,但在定常场下重合

问题2.3 加速度向量场定义如下

vtkMassProperties 连续体积计算原理_正交变换_126

问题2.4: 考虑运动方程 vtkMassProperties 连续体积计算原理_标量_127 以及温度场 vtkMassProperties 连续体积计算原理_标量_128

vtkMassProperties 连续体积计算原理_标量_129


vtkMassProperties 连续体积计算原理_笔记_130


参考教材:

Eduardo W.V. Chaves, Notes On Continuum Mechanics