pytorch 中 .detach() .detach_() 和 .data的区别

当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整;或者只训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播。

1. detach()

返回一个新的Variable,从当前计算图中分离下来的,但是仍指向原变量的存放位置,不同之处只是requires_grad为false,得到的这个Variable永远不需要计算其梯度,不具有grad。即使之后重新将它的requires_grad置为true,它也不会具有梯度grad。这样我们就会继续使用这个新的Variable进行计算,后面当我们进行反向传播时,到该调用detach()的Variable就会停止,不能再继续向前进行传播。

源码:

def detach(self):

    """Returns a new Variable, detached from the current graph.

    Result will never require gradient. If the input is volatile, the output

    will be volatile too.

    .. note::

     Returned Variable uses the same data tensor, as the original one, and

     in-place modifications on either of them will be seen, and may trigger

     errors in correctness checks.

    """

    result = NoGrad()(self) # this is needed, because it merges version counters

    result._grad_fn = None

     return result

可见函数进行的操作有:

  • 将grad_fn设置为None
  • 将Variable的requires_grad设置为False

注意:

返回的Variable和原始的Variable公用同一个data tensor。in-place函数修改会在两个Variable上同时体现(因为它们共享data tensor),当要对其调用backward()时可能会导致错误。

举例:

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
out.sum().backward()
print(a.grad)



Output:
--------------------------------------------------------
None
tensor([0.1966, 0.1050, 0.0452])
--------------------------------------------------------

当使用detach()但是没有进行更改时,并不会影响backward():

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)

#添加detach(),c的requires_grad为False
c = out.detach()
print(c)

#这时候没有对c进行更改,所以并不会影响backward()
out.sum().backward()
print(a.grad)


Output:
------------------------------------------------------------------
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0.1966, 0.1050, 0.0452])
------------------------------------------------------------------

可见c,out之间的区别是c是没有梯度的,out是有梯度的。

如果这里使用的是c进行sum()操作并进行backward(),则会报错:

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)

#添加detach(),c的requires_grad为False
c = out.detach()
print(c)

#使用新生成的Variable进行反向传播
c.sum().backward()
print(a.grad)


Output:
------------------------------------------------------------------
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
RuntimeError                              Traceback (most recent call last)
---> 13 c.sum().backward()
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
------------------------------------------------------------------

为c添加一个requires_grad=True,来继续使用c进行后续的计算,但是c之前的操作的梯度都被消除,a不会具有梯度,也不会被更新。(但似乎这样操作也没啥意义。)

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)

#添加detach(),c的requires_grad为False
c = out.detach()
print(c)

#为新生成的Variable进行添加允许梯度下降,进行反向传播
c.requires_grad = True
c.sum().backward()
print(a.grad)



Output:
------------------------------------------------------------------
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
RuntimeError                              Traceback (most recent call last)
---> 13 c.sum().backward()
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
------------------------------------------------------------------

如果此时对c进行了更改,这个更改会被autograd追踪,在对out.sum()进行backward()时也会报错,因为此时的值进行backward()得到的梯度是错误的:

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)

#添加detach(),c的requires_grad为False
c = out.detach()
print(c)

c.zero_() #使用in place函数对其进行修改, 会发现c的修改同时会影响out的值
print(c)
print(out)

#这时候对c进行更改,所以会影响backward(),这时候就不能进行backward(),会报错
out.sum().backward()
print(a.grad)

Output:
------------------------------------------------------------------
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward0>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0., 0., 0.])
tensor([0., 0., 0.], grad_fn=<SigmoidBackward0>)
RuntimeError                              Traceback (most recent call last)
---> 18 out.sum().backward()
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [3]], which is output 0 of SigmoidBackward0, is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
------------------------------------------------------------------

detach可以用来控制网络参数更新

如果A网络的输出被喂给B网络作为输入, 如果我们希望在梯度反传的时候只更新B中参数的值,而不更新A中的参数值,这时候就可以使用detach()。

a = A(input)
a = a.deatch() # 或者a.detach_()进行in_place操作
out = B(a)
loss = criterion(out, labels)
loss.backward()

但是,如果希望修改A的参数, 而不希望修改B的参数, 那么就需要手动将B中参数的requires_grad属性设置为False,因为B在A之后如果给B进行detach,会使得A、B参数都不更新。

for param in B.parameters():
    param.requires_grad = False

还有一点需要注意的是Tensor.detach()和Tensor.data()的区别

Tensor.data()和Tensor.detach()一样, 都会返回一个新的Tensor, 这个Tensor和原来的Tensor共享内存空间,一个改变,另一个也会随着改变,且都会设置新的Tensor的requires_grad属性为False。这两个方法只取出原来Tensor的tensor数据, 丢弃了grad、grad_fn等额外的信息。区别在于Tensor.data()方法不能被autograd追踪到,如果你修改了Tensor.data()返回的新Tensor,原来的Tensor也会改变, 但是这时候的微分并没有被追踪到,那么当你执行loss.backward()的时候并不会报错,但是求的梯度就是错误的!因此, 如果你使用了Tensor.data()方法, 那么切记一定不要随便修改返回的新Tensor的值。如果你使用的是Tensor.detach()方法, 当你修改他的返回值并进行求导操作,会报错。 因此,Tensor.detach()是安全的。

detach可以用来导出存储embedding

2. data

如果上面的操作使用的是.data,效果会不同:

这里的不同在于.data的修改不会被autograd追踪,这样当进行backward()时它不会报错,回得到一个错误的backward值

import torch

a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)

c = out.data
print(c)
c.zero_() #使用in place函数对其进行修改


#会发现c的修改同时也会影响out的值
print(c)
print(out)

#这里的不同在于.data的修改不会被autograd追踪,这样当进行backward()时它不会报错,回得到一个错误的backward值
out.sum().backward()
print(a.grad)


Output:
------------------------------------------------------------------
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward0>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0., 0., 0.])
tensor([0., 0., 0.], grad_fn=<SigmoidBackward0>)
tensor([0., 0., 0.])
------------------------------------------------------------------

上面的内容实现的原理是:

In-place 正确性检查

所有的Variable都会记录用在他们身上的 in-place operations。如果pytorch检测到variable在一个Function中已经被保存用来backward,但是之后它又被in-place operations修改。当这种情况发生时,在backward的时候,pytorch就会报错。这种机制保证了,如果你用了in-place operations,但是在backward过程中没有报错,那么梯度的计算就是正确的。

下面结果正确是因为改变的是sum()的结果,中间值a.sigmoid()并没有被影响,所以其对求梯度并没有影响:

import torch


a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid().sum() #但是如果sum写在这里,而不是写在backward()前,得到的结果是正确的
print(out)

c = out.data
print(c)
c.zero_() #使用in place函数对其进行修改


#会发现c的修改同时也会影响out的值
print(c)
print(out)

#没有写在这里

out.backward()
print(a.grad)


Output:
------------------------------------------------------------------
None
tensor(2.5644, grad_fn=<SumBackward0>)
tensor(2.5644)
tensor(0.)
tensor(0., grad_fn=<SumBackward0>)
tensor([0.1966, 0.1050, 0.0452])
------------------------------------------------------------------

3. detach_()

将一个Variable从创建它的图中分离,并把它设置成叶子variable

其实就相当于变量之间的关系本来是x -> m -> y,这里的叶子variable是x,但是这个时候对m进行了.detach_()操作,其实就是进行了两个操作:

  • 将m的grad_fn的值设置为None,这样m就不会再与前一个节点x关联,这里的关系就会变成x, m -> y,此时的m就变成了叶子结点
  • 然后会将m的requires_grad设置为False,这样对y进行backward()时就不会求m的梯度

这么一看其实detach()和detach_()很像,两个的区别就是detach_()是对本身的更改,detach()则是生成了一个新的variable

比如x -> m -> y中如果对m进行detach(),后面如果反悔想还是对原来的计算图进行操作还是可以的

但是如果是进行了detach_(),那么原来的计算图也发生了变化,就不能反悔了

参考链接

  • pytorch .detach() .detach_() 和 .data用于切断反向传播的实现:https://cloud.tencent.com/developer/article/165927
  • Pytorch中.detach()与.data()的用法:https://zhuanlan.zhihu.com/p/410199046