笔者在做Web敏感信息检测功能时,需要用到NLP领域的文本情感分析,这里用的是百度的预训练模型Senta。

一、下载预训练模型

百度提供的预训练模型在GitHub上Senta,该模型所需环境是PaddlePaddle,这里就不得不吐槽一下在线安装的速度简直不要太慢。

NLP情感分析模型 百度nlp文本情感分析_机器学习

二、修改代码

笔者的需求是我将一个网页中含有敏感信息的语句存入一个文件中,然后利用Senta对文件中的所有数据进行预测,并返回预测的概率(接近1表示积极情感,接近0表示消极情感)。代码如下:

# encoding=utf-8
import os
import time
import io
from datetime import datetime
import random
import jieba

# def sentiment_pro(all_data):
if __name__ == "__main__":
    all_data = [
            ['敏感词','含有敏感词的语句'],
            ['敏感字','含有敏感词的语句']]
    start = datetime.now()
#     #将含有敏感词的句子保存到一个文件中,用于预测
    basedir = os.path.abspath(os.path.dirname(__file__))
    file_name = basedir + '\\WebSensitiveContent\\' + str(datetime.now()).replace(":","").replace(".",'').replace("-","").replace(" ","") + str(random.randint(0,100)) + '.txt'
    with io.open(file_name, "w", encoding='utf8') as fin:
            for data_sentence in all_data:
                    seg_list = jieba.cut(data_sentence[1])  # 默认是精确模式
                    data_string = " ".join(seg_list)
                    fin.write('1'+'\t'+data_string+'\n')#第一列中写个固定值1是因为模型的输入格式要求,与结果无关,可以是任意整数
    #调用另一个python文件,使用深度模型对生成的文件进行情感预测
    dir = "python ./Senta-master/sentiment_classify.py --test_data_path ./Senta-master/data/test_data/corpus.test --word_dict_path ./Senta-master/C-API/fluid-senti-classify_config/config/train.vocab --mode infer --model_path ./Senta-master/C-API/fluid-senti-classify_config/config/Senta/"
    result = os.popen(dir)
    res = result.read()#读取返回结果
    #将检测的结果保存到reslut_pos_score中,返回的结果是0到1之间的小数,越接近1代表情感越偏向积极,反正亦然
    reslut_pos_score = []
    for line in res.splitlines():
        print(line)
    os.remove(file_name)#删除临时生成的敏感词文档

    #加将正向敏感词和负向敏感分别加入到一个list中,用于后面对敏感次的检测
    PositiveSensitiveWords = list()
    NegativeSensitiveWords = list()

    with open('./Senta-master/mydict/na/party-department.txt', 'r', encoding='utf8') as f:
        for line in f.readlines():
                PositiveSensitiveWords.append(line.replace("\n",""))
    with open('./Senta-master/mydict/na/party-leader.txt', 'r', encoding='utf8') as f:
        for line in f.readlines():
                PositiveSensitiveWords.append(line.replace("\n",""))
    with open('./Senta-master/mydict/na/party-meeting.txt', 'r', encoding='utf8') as f:
        for line in f.readlines():
                PositiveSensitiveWords.append(line.replace("\n",""))
    with open('./Senta-master/mydict/na/reaction.txt', 'r', encoding='utf8') as f:
        for line in f.readlines():
                PositiveSensitiveWords.append(line.replace("\n",""))
    with open('./Senta-master/mydict/po/brute.txt', 'r', encoding='utf8') as f:
        for line in f.readlines():
                NegativeSensitiveWords.append(line.replace("\n",""))
    with open('./Senta-master/mydict/po/drug.txt', 'r', encoding='utf8') as f:
        for line in f.readlines():
                NegativeSensitiveWords.append(line.replace("\n",""))
    with open('./Senta-master/mydict/po/superstition.txt', 'r', encoding='utf8') as f:
        for line in f.readlines():
                NegativeSensitiveWords.append(line.replace("\n",""))
        
    i = 0 #用于确定当前敏感词的索引值,以便于找到对应的情感分析结果
    result_need_remove = []#用于存储通过情感判断后不需要报警的敏感句子
    for SensitiveWord in all_data:
        if SensitiveWord[0] in PositiveSensitiveWords:#判断是否为正向敏感词
                if float(reslut_pos_score[i]) > 0.6:#正向敏感词 并且情感是积极的 则移除
                        print(SensitiveWord[0]+":是正向敏感次" + SensitiveWord[1] + "情感得分为:"+str(reslut_pos_score[i]))
                        result_need_remove.append(SensitiveWord)
        elif SensitiveWord[0] in NegativeSensitiveWords:#判断是否为负向敏感词
                if float(reslut_pos_score[i]) < 0.35:#负向敏感词 并且情感是消极的 则移除
                        print(SensitiveWord[0]+":是负向敏感次" + SensitiveWord[1] + "情感得分为:"+str(reslut_pos_score[i]))
                        result_need_remove.append(SensitiveWord)
        else:#中性或者是绝对敏感词
                print(SensitiveWord[0]+":是中性或者绝对敏感词" + SensitiveWord[1] + "情感得分为:"+str(reslut_pos_score[i]))
        i = i + 1
    for need_remove in result_need_remove:
            all_data.remove(need_remove)
    end = datetime.now()
    print('Running time: %s Seconds'%(end-start))

 

该代码文件存放的位置是sentiment_classify.py的上级目录。结构如下图:

NLP情感分析模型 百度nlp文本情感分析_深度学习_02

笔者没有展示训练的过程,而是直接先用Senta也有的训练模型。我看了一下训练的数据量是1万条。测试结果只能说还行吧,毕竟也就一万条数据。