手把手教你分离flutter ios 编译产物--附工具

1、为什么写这篇文章?

Flutter ios安装包size的裁剪一直是个备受关注的主题,年前字节跳动分享了一篇文章(),提到了ios分离AOT编译产物,把里面的数据段和资源提取出来以减少安装包size,但文章里面并没有展开介绍如何实现,这篇文章会很详细的分析如何分离AOT编译产物。并给出工具,方便没编译flutter engine经验的同学也可以快速的实现这功能。

2、ios编译产物构成

本文主要分析App.framework里面的生成流程,以及如何分离AOT编译产物,App.framework的构成如下图所示。

flutter build ios 混淆 flutter 编译ios_App

主要有App动态库二进制文件、flutter_assets还有Info.plist三部分构成,而App动态库二进制文件又由4部分构成,vm的数据段、代码段和isolate的数据段、代码段。其中flutter_assets、vm数据段、isolate数据段都是可以不打包到ipa中,可以从外部document中加载到,这就让我们有缩减ipa包的可能了。

3、真实线上项目AOT编译产物前后对比

很多人肯定会关心最终缩减的效果。我们先给出一个真实线上项目,用官方编译engine和用分离产物的engine生成的App.framework的对比图。

官方engine生成的App.framework构成如下,其中App动态库二进制文件19.2M,flutter_assets有3.3M,共22.5M。

flutter build ios 混淆 flutter 编译ios_flutter_02

flutter build ios 混淆 flutter 编译ios_ios编译产物和android编译产物_03

用分离产物的engine生成的App.framework构成如下,只剩App动态库二进制文件14.8M。

flutter build ios 混淆 flutter 编译ios_flutter_04

App.framework从22.5裁到14.8M,不同项目可能不一样。

4、AOT编译产物生成原理及分离方法介绍

每次xcode项目进行进行构建前都会运行xcode_backend.sh这个脚本进行flutter产物打包,我们从xcode_backend.sh开始分析。从上文分析App.framework里面总共有三个文件生成二进制文件App、资源文件flutter_assets目录和Info.plist文件,这里面我们只关心二进制文件App和flutter_assets目录是怎样生成的。

4.1、App文件生成流程

4.1.1、xcode_backend.sh
分析xcode_backend.sh,我们可以发现生成App和flutter_assets的关键shell代码如下
# App动态库二进制文件
RunCommand "${FLUTTER_ROOT}/bin/flutter" --suppress-analytics \
${verbose_flag} \
build aot \
--output-dir="${build_dir}/aot" \
--target-platform=ios \
--target="${target_path}" \
--${build_mode} \
--ios-arch="${archs}" \
${flutter_engine_flag} \
${local_engine_flag} \
${bitcode_flag}
.
.
.
RunCommand cp -r -- "${app_framework}" "${derived_dir}"
# 生成flutter_assets
RunCommand "${FLUTTER_ROOT}/bin/flutter" \
${verbose_flag} \
build bundle \
--target-platform=ios \
--target="${target_path}" \
--${build_mode} \
--depfile="${build_dir}/snapshot_blob.bin.d" \
--asset-dir="${derived_dir}/App.framework/${assets_path}" \
${precompilation_flag} \
${flutter_engine_flag} \
${local_engine_flag} \
${track_widget_creation_flag}
4.1.2、${FLUTTER_ROOT}/bin/flutter
从上面的代码可以看到这里调用了的远行了 /bin/flutter 这个shell脚本,这里介绍另一篇讲解Flutter命令执行机制的文章, /bin/flutter 里面提到真正运行代码的是
...
FLUTTER_TOOLS_DIR="$FLUTTER_ROOT/packages/flutter_tools"
SNAPSHOT_PATH="$FLUTTER_ROOT/bin/cache/flutter_tools.snapshot"
STAMP_PATH="$FLUTTER_ROOT/bin/cache/flutter_tools.stamp"
SCRIPT_PATH="$FLUTTER_TOOLS_DIR/bin/flutter_tools.dart"
DART_SDK_PATH="$FLUTTER_ROOT/bin/cache/dart-sdk"
DART="$DART_SDK_PATH/bin/dart"
PUB="$DART_SDK_PATH/bin/pub"
//真正的执行逻辑
"$DART" $FLUTTER_TOOL_ARGS "$SNAPSHOT_PATH" "$@"
//等价于下面的命令
/bin/cache/dart-sdk/bin/dart $FLUTTER_TOOL_ARGS "bin/cache/flutter_tools.snapshot" "$@"
就是说通过dart命令运行flutter_tools.snapshot这个产物
###4.1.3、dart代码
flutter_tools.snapshot的入口是
[-> flutter/packages/flutter_tools/bin/flutter_tools.dart]
import 'package:flutter_tools/executable.dart' as executable;
void main(List args) {
executable.main(args);
}
import 'runner.dart' as runner;
Future main(List args) async {
...
await runner.run(args, [
AnalyzeCommand(verboseHelp: verboseHelp),
AttachCommand(verboseHelp: verboseHelp),
BuildCommand(verboseHelp: verboseHelp),
ChannelCommand(verboseHelp: verboseHelp),
CleanCommand(),
ConfigCommand(verboseHelp: verboseHelp),
CreateCommand(),
DaemonCommand(hidden: !verboseHelp),
DevicesCommand(),
DoctorCommand(verbose: verbose),
DriveCommand(),
EmulatorsCommand(),
FormatCommand(),
GenerateCommand(),
IdeConfigCommand(hidden: !verboseHelp),
InjectPluginsCommand(hidden: !verboseHelp),
InstallCommand(),
LogsCommand(),
MakeHostAppEditableCommand(),
PackagesCommand(),
PrecacheCommand(),
RunCommand(verboseHelp: verboseHelp),
ScreenshotCommand(),
ShellCompletionCommand(),
StopCommand(),
TestCommand(verboseHelp: verboseHelp),
TraceCommand(),
TrainingCommand(),
UpdatePackagesCommand(hidden: !verboseHelp),
UpgradeCommand(),
VersionCommand(),
], verbose: verbose,
muteCommandLogging: muteCommandLogging,
verboseHelp: verboseHelp,
overrides: {
CodeGenerator: () => const BuildRunner(),
});
}
经过一轮调用后,真正编译产物的类在 GenSnapshot.run,调用栈http://gityuan.com/2019/09/07/flutter_run/这篇文章有详细介绍,这里就不细说了
[-> lib/src/base/build.dart]
class GenSnapshot {
Future run({
@required SnapshotType snapshotType,
IOSArch iosArch,
Iterable additionalArgs = const [],
}) {
final List args = [
'--causal_async_stacks',
]..addAll(additionalArgs);
//获取gen_snapshot命令的路径
final String snapshotterPath = getSnapshotterPath(snapshotType);
//iOS gen_snapshot是一个多体系结构二进制文件。 作为i386二进制文件运行将生成armv7代码。 作为x86_64二进制文件运行将生成arm64代码。
// /usr/bin/arch可用于运行具有指定体系结构的二进制文件
if (snapshotType.platform == TargetPlatform.ios) {
final String hostArch = iosArch == IOSArch.armv7 ? '-i386' : '-x86_64';
return runCommandAndStreamOutput(['/usr/bin/arch', hostArch, snapshotterPath]..addAll(args));
}
return runCommandAndStreamOutput([snapshotterPath]..addAll(args));
}
}
GenSnapshot.run具体命令根据前面的封装,最终等价于:
//这是针对iOS的genSnapshot命令
/usr/bin/arch -x86_64 flutter/bin/cache/artifacts/engine/ios-release/gen_snapshot
--causal_async_stacks
--deterministic
--snapshot_kind=app-aot-assembly
--assembly=build/aot/arm64/snapshot_assembly.S
build/aot/app.dill
此处gen_snapshot是一个二进制可执行文件,所对应的执行方法源码为third_party/dart/runtime/bin/gen_snapshot.cc 这个文件是flutter engine里面文件,需要拉取engine的代码才能修改,编译flutter engine 可以参考文章手把手教你编译Flutter engine,下文我们也会介绍编译完flutter engine ,怎么拿到gen_snapshot编译后的二进制文件。
###4.1.4、flutter engine c++代码 Flutter机器码生成gen_snapshot这篇文章对gen_snapshot流程做了详细的分析,这里我直接给出最后结论,生成数据段和代码段的代码在 AssemblyImageWriter::WriteText这个函数里面
[-> third_party/dart/runtime/vm/image_snapshot.cc]
void AssemblyImageWriter::WriteText(WriteStream* clustered_stream, bool vm) {
Zone* zone = Thread::Current()->zone();
//写入头部
const char* instructions_symbol = vm ? "_kDartVmSnapshotInstructions" : "_kDartIsolateSnapshotInstructions";
assembly_stream_.Print(".text\n");
assembly_stream_.Print(".globl %s\n", instructions_symbol);
assembly_stream_.Print(".balign %" Pd ", 0\n", VirtualMemory::PageSize());
assembly_stream_.Print("%s:\n", instructions_symbol);
//写入头部空白字符,使得指令快照看起来像堆页
intptr_t instructions_length = next_text_offset_;
WriteWordLiteralText(instructions_length);
intptr_t header_words = Image::kHeaderSize / sizeof(uword);
for (intptr_t i = 1; i < header_words; i++) {
WriteWordLiteralText(0);
}
//写入序幕.cfi_xxx
FrameUnwindPrologue();
Object& owner = Object::Handle(zone);
String& str = String::Handle(zone);
ObjectStore* object_store = Isolate::Current()->object_store();
TypeTestingStubNamer tts;
intptr_t text_offset = 0;
for (intptr_t i = 0; i < instructions_.length(); i++) {
auto& data = instructions_[i];
const bool is_trampoline = data.trampoline_bytes != nullptr;
if (is_trampoline) { //针对跳床函数
const auto start = reinterpret_cast(data.trampoline_bytes);
const auto end = start + data.trampline_length;
//写入.quad xxx字符串
text_offset += WriteByteSequence(start, end);
delete[] data.trampoline_bytes;
data.trampoline_bytes = nullptr;
continue;
}
const intptr_t instr_start = text_offset;
const Instructions& insns = *data.insns_;
const Code& code = *data.code_;
// 1. 写入 头部到入口点
{
NoSafepointScope no_safepoint;
uword beginning = reinterpret_cast(insns.raw_ptr());
uword entry = beginning + Instructions::HeaderSize(); //ARM64 32位对齐
//指令的只读标记
uword marked_tags = insns.raw_ptr()->tags_;
marked_tags = RawObject::OldBit::update(true, marked_tags);
marked_tags = RawObject::OldAndNotMarkedBit::update(false, marked_tags);
marked_tags = RawObject::OldAndNotRememberedBit::update(true, marked_tags);
marked_tags = RawObject::NewBit::update(false, marked_tags);
//写入标记
WriteWordLiteralText(marked_tags);
beginning += sizeof(uword);
text_offset += sizeof(uword);
text_offset += WriteByteSequence(beginning, entry);
}
// 2. 在入口点写入标签
owner = code.owner();
if (owner.IsNull()) {
// owner为空,说明是一个常规的stub,其中stub列表定义在stub_code_list.h中的VM_STUB_CODE_LIST
const char* name = StubCode::NameOfStub(insns.EntryPoint());
if (name != nullptr) {
assembly_stream_.Print("Precompiled_Stub_%s:\n", name);
} else {
if (name == nullptr) {
// isolate专有的stub代码[见小节3.5.1]
name = NameOfStubIsolateSpecificStub(object_store, code);
}
assembly_stream_.Print("Precompiled__%s:\n", name);
}
} else if (owner.IsClass()) {
//owner为Class,说明是该类分配的stub,其中class列表定义在class_id.h中的CLASS_LIST_NO_OBJECT_NOR_STRING_NOR_ARRAY
str = Class::Cast(owner).Name();
const char* name = str.ToCString();
EnsureAssemblerIdentifier(const_cast(name));
assembly_stream_.Print("Precompiled_AllocationStub_%s_%" Pd ":\n", name,
i);
} else if (owner.IsAbstractType()) {
const char* name = tts.StubNameForType(AbstractType::Cast(owner));
assembly_stream_.Print("Precompiled_%s:\n", name);
} else if (owner.IsFunction()) { //owner为Function,说明是一个常规的dart函数
const char* name = Function::Cast(owner).ToQualifiedCString();
EnsureAssemblerIdentifier(const_cast(name));
assembly_stream_.Print("Precompiled_%s_%" Pd ":\n", name, i);
} else {
UNREACHABLE();
}
#ifdef DART_PRECOMPILER
// 创建一个标签用于DWARF
if (!code.IsNull()) {
const intptr_t dwarf_index = dwarf_->AddCode(code);
assembly_stream_.Print(".Lcode%" Pd ":\n", dwarf_index);
}
#endif
{
// 3. 写入 入口点到结束
NoSafepointScope no_safepoint;
uword beginning = reinterpret_cast(insns.raw_ptr());
uword entry = beginning + Instructions::HeaderSize();
uword payload_size = insns.raw()->HeapSize() - insns.HeaderSize();
uword end = entry + payload_size;
text_offset += WriteByteSequence(entry, end);
}
}
FrameUnwindEpilogue();
#if defined(TARGET_OS_LINUX) || defined(TARGET_OS_ANDROID) || \
defined(TARGET_OS_FUCHSIA)
assembly_stream_.Print(".section .rodata\n");
#elif defined(TARGET_OS_MACOS) || defined(TARGET_OS_MACOS_IOS)
assembly_stream_.Print(".const\n");
#else
UNIMPLEMENTED();
#endif
//写入数据段
const char* data_symbol = vm ? "_kDartVmSnapshotData" : "_kDartIsolateSnapshotData";
assembly_stream_.Print(".globl %s\n", data_symbol);
assembly_stream_.Print(".balign %" Pd ", 0\n",
OS::kMaxPreferredCodeAlignment);
assembly_stream_.Print("%s:\n", data_symbol);
uword buffer = reinterpret_cast(clustered_stream->buffer());
intptr_t length = clustered_stream->bytes_written();
WriteByteSequence(buffer, buffer + length);
}

这里是生成的是snapshot_assembly.S,后面在dart代码还将对这个文件加工成App动态库文件,我们会在下文介绍,我们要做代码段和数据段分离修改的就是这个c++函数,首先改掉代码不写进snapshot_assembly.S,在另外的地方把二进制数据保存起来。后面通过修改engine的加载流程从外部加载这二进制数据,即可达到分离代码段和数据段的目的。下面我们继续分析生成完snapshot_assembly.S后,在哪里生成App动态库二进制文件。

4.1.5、dart代码调用xcrun生成二进制文件和动态库

生成完snapshot_assembly.S后,再加工关键代码在**[-> lib/src/base/build.dart]**
/// Builds an iOS or macOS framework at [outputPath]/App.framework from the assembly
/// source at [assemblyPath].
Future _buildFramework({
@required DarwinArch appleArch,
@required bool isIOS,
@required String assemblyPath,
@required String outputPath,
@required bool bitcode,
@required bool quiet
}) async {
final String targetArch = getNameForDarwinArch(appleArch);
if (!quiet) {
printStatus('Building App.framework for $targetArch...');
}
final List commonBuildOptions = [
'-arch', targetArch,
if (isIOS)
'-miphoneos-version-min=8.0',
];
const String embedBitcodeArg = '-fembed-bitcode';
final String assemblyO = fs.path.join(outputPath, 'snapshot_assembly.o');
List isysrootArgs;
if (isIOS) {
final String iPhoneSDKLocation = await xcode.sdkLocation(SdkType.iPhone);
if (iPhoneSDKLocation != null) {
isysrootArgs = ['-isysroot', iPhoneSDKLocation];
}
}
//生成snapshot_assembly.o二进制文件
final RunResult compileResult = await xcode.cc([
'-arch', targetArch,
if (isysrootArgs != null) ...isysrootArgs,
if (bitcode) embedBitcodeArg,
'-c',
assemblyPath,
'-o',
assemblyO,
]);
if (compileResult.exitCode != 0) {
printError('Failed to compile AOT snapshot. Compiler terminated with exit code ${compileResult.exitCode}');
return compileResult;
}
final String frameworkDir = fs.path.join(outputPath, 'App.framework');
fs.directory(frameworkDir).createSync(recursive: true);
final String appLib = fs.path.join(frameworkDir, 'App');
final List linkArgs = [
...commonBuildOptions,
'-dynamiclib',
'-Xlinker', '-rpath', '-Xlinker', '@executable_path/Frameworks',
'-Xlinker', '-rpath', '-Xlinker', '@loader_path/Frameworks',
'-install_name', '@rpath/App.framework/App',
if (bitcode) embedBitcodeArg,
if (isysrootArgs != null) ...isysrootArgs,
'-o', appLib,
assemblyO,
];
//打包成动态库
final RunResult linkResult = await xcode.clang(linkArgs);
if (linkResult.exitCode != 0) {
printError('Failed to link AOT snapshot. Linker terminated with exit code ${compileResult.exitCode}');
}
return linkResult;
}

这里最终会调用xcrun cc命令和xcrun clang命令打包动态库二进制文件。

4.1.6、修改生成动态库文件App的流程

根据上面的分析整个流程涉及dart代码和c++代码,dart代码其实不在engine,属于flutter项目,只需要用打开**[-> packages/flutter_tools]这个flutter 项目,直接修改就好,要注意一点,flutter_tools的编译产物是有缓存的,缓存路径是[-> bin/cache/flutter_tools.snapshot]**,每次我们修改完dart代码,都需要删掉flutter_tools.snapshot重新生成才能生效。

那c++部分代码呢,首先设计c++代码都是需要重新编译flutter engine, 可以参考文章手把手教你编译Flutter engine,编译后engine的产物,如下图

flutter build ios 混淆 flutter 编译ios_二进制文件_05

把编译后的gen_snapshot文件拷贝到flutter目录下,下图的位置即可。

flutter build ios 混淆 flutter 编译ios_App_06

注意,engine是分架构的,arm64的gen_snapshot名字是gen_snapshot_arm64,armv7的gen_snapshot名字是gen_snapshot_armv7,完成替换后,我们定制的代码就可以生效了。

4.1.7、生成动态库文件App流程总结

至此,生成动态库文件App的全部流程都介绍清楚了,关键部分就是修改4.1.4提到的c++函数,我们修改完后的编译产物如下。

flutter build ios 混淆 flutter 编译ios_二进制文件_07

提取到了4个文件,分别是arm64和armv7架构下的vm数据段和isolate数据段,可以按需下发给数据段文件给应用,从而实现flutter ios 动态库编译产物的裁剪。

4.2、flutter_assets生成流程

像4.1.1和4.1.2说的那样,具体生成flutter_assets的代码在BundleBuilder.dart文件

[-> packages/flutter_tools/lib/src/bundle.dart]
Future build({
@required TargetPlatform platform,
BuildMode buildMode,
String mainPath,
String manifestPath = defaultManifestPath,
String applicationKernelFilePath,
String depfilePath,
String privateKeyPath = defaultPrivateKeyPath,
String assetDirPath,
String packagesPath,
bool precompiledSnapshot = false,
bool reportLicensedPackages = false,
bool trackWidgetCreation = false,
List extraFrontEndOptions = const [],
List extraGenSnapshotOptions = const [],
List fileSystemRoots,
String fileSystemScheme,
}) async {
mainPath ??= defaultMainPath;
depfilePath ??= defaultDepfilePath;
assetDirPath ??= getAssetBuildDirectory();
printStatus("assetDirPath" + assetDirPath);
printStatus("mainPath" + mainPath);
packagesPath ??= fs.path.absolute(PackageMap.globalPackagesPath);
final FlutterProject flutterProject = FlutterProject.current();
await buildWithAssemble(
buildMode: buildMode ?? BuildMode.debug,
targetPlatform: platform,
mainPath: mainPath,
flutterProject: flutterProject,
outputDir: assetDirPath,
depfilePath: depfilePath,
precompiled: precompiledSnapshot,
trackWidgetCreation: trackWidgetCreation,
);
// Work around for flutter_tester placing kernel artifacts in odd places.
if (applicationKernelFilePath != null) {
final File outputDill = fs.directory(assetDirPath).childFile('kernel_blob.bin');
if (outputDill.existsSync()) {
outputDill.copySync(applicationKernelFilePath);
}
}
return;
}

这里assetDirPath就是最终打包产生bundle产物的路径,我们只要修改这个路径,不指向App.framework,指向其他路径,就可以避免打包进app。

4.3、AOT编译产物生成原理总结

至此,我们已经把AOT编译产物里面的动态库文件App、flutter_assets,的生成流程解析清楚了,也把如何分离的方法介绍了,对我们的demo做完修改后的产物跟分离前的产物对比如下图所示

分离前

flutter build ios 混淆 flutter 编译ios_ios编译产物和android编译产物_08

分离后

flutter build ios 混淆 flutter 编译ios_二进制文件_09

那下面我们分析如何修改flutter engine的加载流程,使engine不再加载App.framework里面的资源(因为已经分离出来),去加载外部给予的资源

5、AOT编译产物加载流程及修改方法介绍

上面我们已经成功从App.framework里面分离出了数据段数据已经flutter_assets,现在需要修改加载流程,加载外部数据。

5.1、数据段加载流程分析及修改

加载数据段的堆栈如下。

flutter build ios 混淆 flutter 编译ios_App_10

可以看到其实是用::dlsym从动态库里面读出数据段的数据强转成const uint8_t使用,我们只要修改代码,不从动态库读取,外部提供一个const uint8_t来代替就好了

我最终选择在下图的两个地方修改

flutter build ios 混淆 flutter 编译ios_二进制文件_11

flutter build ios 混淆 flutter 编译ios_ios编译产物和android编译产物_12

这里我直接构造一个SymbolMapping返回,SymbolMapping的定义如下

class SymbolMapping final : public Mapping {
public:
SymbolMapping(fml::RefPtr<:nativelibrary> native_library,
const char* symbol_name);
//新增一个构造函数直接传如外部数据
SymbolMapping(const uint8_t * data);
~SymbolMapping() override;
// |Mapping|
size_t GetSize() const override;
// |Mapping|
const uint8_t* GetMapping() const override;
private:
fml::RefPtr<:nativelibrary> native_library_;
const uint8_t* mapping_ = nullptr;
FML_DISALLOW_COPY_AND_ASSIGN(SymbolMapping);
};

修改了这里,我们就可以完成外部数据段的加载了。

5.2、flutter_assets加载流程分析及修改

这个比较简单,我们直接上代码,

flutter build ios 混淆 flutter 编译ios_ios编译产物和android编译产物_13

只要改了settings.assets_path,改成外部的路径就好了。

5.3、修改engine总结

到这里,我们已经成功分离好engine了,分离之后对于很多混编的项目就是,flutter并不是必须的,就可以吧数据段部分和flutter_assets不打包进ipa,按需的下载下来,从而实现ipa的减size,下午会给出编好的engine、gen_snapshot文件和demo。当然,有些业务甚至不希望下载,想调用流程完全不变,也可以减size,这个由于篇幅有限,我们后面再写一篇专门给出方法和工具。

6、工具介绍和使用

从上面的分析可以看出,搞这个事情,要很多铺垫,很麻烦,很多同学并不想摸索这么久才能在自己的项目进行实验,看效果,为了方便大家验证,我直接把基于v1.12.13+hotfix.7编好的engine、gen_snapshot文件和demo放到github上,让大家直接用.编出来的Flutter.framework是全架构支持的、经过优化的release版,可以直接上线的。下面介绍下运行流程。

6.1如何运行demo验证

在github上下载demo,不做任何改动,用真机直接运行,可以看到产物如下图所示,App动态库 5.5M,flutter_assets 715k,总大小 6.3M。

flutter build ios 混淆 flutter 编译ios_App_14

flutter build ios 混淆 flutter 编译ios_二进制文件_15

然后执行下面的操作,替换engine

把github上的Flutter.framework覆盖掉[->/bin/cache/artifacts/engine/ios-release/Flutter.framework]这个目下的Flutter.framework

把github上的gen_snapshot_arm64覆盖掉[->/bin/cache/artifacts/engine/ios-release/gen_snapshot_arm64]

把github上的gen_snapshot_armv7覆盖掉[->/bin/cache/artifacts/engine/ios-release/gen_snapshot_armv7]

然后把github上的bundle.dart覆盖掉[->packages/flutter_tools/lib/src/bundle.dart]目录下的bundle.dart文件

然后删掉[->bin/cache/flutter_tools.snapshot],这个文件是dart项目生成的二进制文件,删除了新的bundle.dart才能生效

然后重新跑起项目,观察编译产物

可以看到产物如下图所示,只剩下4.6M的产物了,这是demo的压缩效果。

flutter build ios 混淆 flutter 编译ios_flutter_16

7、总结

目前使用这方案,可以分离编译产物和flutter_assets,但也需要app做一定的改动,就是从服务器下载数据段和flutter_assets,才能运行flutter。当然还有一个方法,直接对数据段进行压缩,运行的时候解压,这个也是可行的,但压缩率就没这么高,后面我们也会开源并给出文章介绍。