什么是多任务?

就是操作系统可以同时运行多个任务

多任务的执行方式

并发:交替执行,是假的多任务
并行:同时执行,是真的多任务

第一种多任务的实现方式:多线程

python线程的两种写法(第一种会比较常用):
第一种:

def say():    print("我在说话")def sing():    print("我在唱歌")    time.sleep(1)if __name__ == "__main__":    t1 = threading.Thread(target=say)    t2 = threading.Thread(target=sing)     t1.start()    t2.start()

第二种,通过继承Thread类完成创建线程:

class MyThread(threading.Thread):    def run(self):        for i in range(3):            time.sleep(1)            msg = "I'm " + self.name + " @ " + str(i) # name属性中保存的是当前线程的名字            print(msg)if __name__ == "__main":    t = MyThread()    t.start()

主线程等待所有子线程执行完才结束

多线程中的全局变量

多线程允许共享全局变量,但全局变量存在资源竞争的问题,导致计算出的结果与预期不符。比如相加到一定数值,得到的结果可能会比预期的小,数值越大结果越明显。

这是因为线程A可能运行到一半,线程B就开始运行,两个线程都竞争全局变量的时候会出现资源竞争问题。

解决资源竞争的问题是使用同步概念,用互斥锁解决,线程A运行时候上了互斥锁,线程B需要等到线程A完成程序后才能运行,这样就避免了资源竞争。

但互斥锁又可能引发死锁的问题。当线程A拥有X锁等待Y锁,线程B拥有Y锁等待X锁,两者都堵塞了在请求对方拥有的资源,导致死锁。

解决死锁的方法有两种:
1,程序实现时尽量避免(银行家算法)
2,添加超时时间

 

第二种多任务的实现方式:多进程

理解进程和程序:

通俗的讲,运行中的叫进程,没运行的叫程序,程序只有一个,而进程可以有多个

多进程python实现:

def say():    print("我在说话")def sing():    print("我在唱歌")    time.sleep(1)if __name__ == "__main__":    t1 = multiprocessing.Process(target=say)    t2 = multiprocessing.Process(target=sing)     t1.start()    t2.start()

进程,线程对比

进程是资源分配的基本单位,线程是操作系统调度的基本单位(执行即调度),一个进程至少有一个主线程,线程依赖于进程,没有进程就没有线程

多进程通信

多进程之间通过队列来实现数据共享:

def download():    # 模拟从网上下载数据    data = [11, 22, 33, 44]    # 向队列中写入数据    for temp in data:        q.put(temp)    print("---下载器已经下载完了数据并且存入到队列中---")def analysis(q):    waitting_analysis_data = list()    # 从队列中获取数据    while True:        data = q.get()        waitting_analysis_data.append(data)        if q.empty():            break    # 模拟数据处理    print(waitting_analysis_data)def main():    # 1.创建一个队列    q = multiprocessing.Queue()    # 2.创建多个进程,将队列的引用当作实参进行传递到里面    p1 = multiprocessing.Process(target=download, args=(q,))    p2 = multiprocessing.Process(target=analysis, args=(q,))    p1.start()    p2.start()if __name__ == "__main__":    main()

进程池Pool

进程池Pool的作用是缓冲,减少进程创建和销毁

进程池用python实现如下:

def worker(msg):    t_start = time.time()    print("%s开始执行,进程号为%d" % (msg, os.getpid()))    # random.random()随机生成0-1之间的浮点数    time_sleep(random.random()*2)    t_stop = time.time()    print(msg, "执行完毕,耗时%0.2f" % (t_stop-t.start))po = Pool(3)for i in range(0, 10):    # Pool().apply_async(要调用的目标, (传递给目标的参数元祖,))    # 每次循环将会用空闲出来的子进程去调用目标    po.apply_async(worker,(i,))print("-----start-----")po.close()  # 关闭进程池,关闭后po不再接收新的请求po.join()  # 等待po中所有子进程执行完成,必须放在close语句之后print("-------end------")

 

第三种多任务的实现方式:协程

迭代器

数据类型可不可迭代:
可迭代:字符串,列表,元组,字典,集合
不可迭代:数字

如果想要一个对象成为一个可以迭代的对象,即可以使用for,那么必须实现__iter__方法,返回一个对象的引用。iter()函数会自动调用__iter__的返回值,__iter__方法的返回值是一个迭代器。

class Classmate(object):    def __init__(self):        self.names = list()        self.current_num = 0    def add(self, name):        self.names.append(name)    def __iter__(self):        return self    def __next__(self):        if self.current_num < len(self.names):            ret = self.names[self.current_num]            self.current_num = 1        else:            raise StopIterationclassmate = Classmate()classmate.add("老王")classmate.add("王二")classmate.add("张三")# print("是否可迭代:", isinstance(classmate, Iterable))# classmate_iterator = iter(classmate)# print("是否是迭代器", isinstance(classmate_iterator, Iterator))# print(next(classmate_iterator))for name in classmate:    print(name)

生成器

生成器是特殊的迭代器。所以生成器也可以迭代要创建一个生成器
第一种方法,只要把一个列表生成式的[]改成():

a = [x*2 for x in range(5)] # a是一个列表b = (x*2 for x in range(5)) # b是一个生成器,<generator object <genexpr> at 0x7f626c132bd0>

第二种方法

如果一个函数中有yield语句,那么这个就不再是函数,而是一个生成器,如果在调用一个函数时。发现这个函数里有yield,不是调用函数,而是创建一个生成器。

def create_num(all_num):    print("------1------")    # a, b = 0, 1    current_num = 0    while current_num < all_num:        print("------2------")        # print(a)        yield a        print("------3------")        a, b = b, a+b        current_num += 1        print("------4------")obj = create_num(10)ret = next(obj)print(ret)ret = next(obj)print(ret)输出结果:------1------------2------0------3------------4------------2------1

生成器第二次迭代的时候并不会从头开始执行,而是从上一次生成器暂停的位置开始执行

协程

用yeild实现多任务,其实也就叫协程,下面例子t1和t2两个任务交替执行

def task_1():    while True:        print("------1-----")        time.sleep(0.1)        yielddef task_2():    while True:        print("-----2-----")        time.sleep(0.1)        yielddef main():    t1 = task_1()    t2 = task_2()    # 先让t1运行一会,当t1中遇到yield的时候,再返回到24行,然后    # 执行t2,当它遇到yield的时候,再次切换到t1中    # 这样t1/t2/t1/t2的交替运行,最终实现了多任务,协程    while True:        next(t1)        next(t2)

切换开销:协程<线程<进程

实际项目中实现协程一般是用greenlet、gevent完成多任务,只要在程序中加入monkey.patch_all(),就可以将程序中用到的耗时操作
的代码换成gevent中自己实现的模块

monkey.patch_all()def coroutune_work(coroutinue_name):    for i in range(10):        print(coroutinue_name, i)        time.sleep(random.random())gevent.joinall([    gevent.spawn(coroutine_work, "work1")    gevent.spawn(coroutine_work, "work2")])

总结

进程是资源分配的基本单位
线程是操作系统调度的基本单位
进程切换开销大,效率低
线程切换开销一般,效率一般(不考虑GIL锁的情况)
协程切换开销最小,效率高
多进程,多线程根据cpu核数不一样可能是并行的,但协程是在一个线程中,所以是并发