技术选型:为什么要用MQ
任何技术没有绝对的好和坏,学会扬长避短。在合适的地方去运用合适的技术,对其原理,模式,运用,优缺点都要有比较熟悉的应用和理解。 MQ的缺点:系统的可用性降低(mq一旦发生故障,整个系统将会出现崩溃),复杂度提高,一致性问题
技术选型:可伸缩性 ,mq的持久化,mq的可用性,能不能支持数据0丢失
为什么使用RabbitMQ呢?
1、使得简单,功能强大。
2、基于AMQP协议。
3、社区活跃,文档完善。
4、高并发性能好,这主要得益于Erlang语言。
5、Spring Boot默认已集成RabbitMQ
RabbitMQ有以下几种工作模式 :
1、Work queues
2、Publish/Subscribe
3、Routing
4、Topics
5、Header
6、RPC
MQ的三大作用:异步,解耦,削锋
特性 | ActiveMQ | RabbitMQ | RocketMQ | Kafka |
单机吞吐量 | 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 | 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 | 10万级,RocketMQ也是可以支撑高吞吐的一种MQ | 10万级别,这是kafka最大的优点,就是吞吐量高。
一般配合大数据类的系统来进行实时数据计算、日志采集等场景 |
topic数量对吞吐量的影响 |
|
| topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降
这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic | topic从几十个到几百个的时候,吞吐量会大幅度下降
所以在同等机器下,kafka尽量保证topic数量不要过多。如果要支撑大规模topic,需要增加更多的机器资源 |
时效性 | ms级 | 微秒级,这是rabbitmq的一大特点,延迟是最低的 | ms级 | 延迟在ms级以内 |
可用性 | 高,基于主从架构实现高可用性 | 高,基于主从架构实现高可用性 | 非常高,分布式架构 | 非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用 |
消息可靠性 | 有较低的概率丢失数据 |
| 经过参数优化配置,可以做到0丢失 | 经过参数优化配置,消息可以做到0丢失 |
功能支持 | MQ领域的功能极其完备 | 基于erlang开发,所以并发能力很强,性能极其好,延时很低 | MQ功能较为完善,还是分布式的,扩展性好 | 功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准 |
优劣势总结 | 非常成熟,功能强大,在业内大量的公司以及项目中都有应用
偶尔会有较低概率丢失消息
而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ 5.x维护越来越少,几个月才发布一个版本
而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用
| erlang语言开发,性能极其好,延时很低;
吞吐量到万级,MQ功能比较完备
而且开源提供的管理界面非常棒,用起来很好用
社区相对比较活跃,几乎每个月都发布几个版本分
在国内一些互联网公司近几年用rabbitmq也比较多一些
但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。
而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug。
而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好。其实主要是erlang语言本身带来的问题。很难读源码,很难定制和掌控。 | 接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障
日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景
而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控
社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码
还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用RocketMQ挺好的 | kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展
同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量
而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略
这个特性天然适合大数据实时计算以及日志收集 |
如图所示
MQ的问题解决
第一问:如何保证消息队列的高可用(MQ挂了怎么办)
rabbitmq有三种模式:单机模式,普通集群模式,镜像集群模式
第二问:如何保证消息不被重复消费啊(如何保证消息消费时的幂等性)?
假设你有个系统,消费一条往数据库里插入一条,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下已经消费过了,直接扔了,不就保留了一条数据?
比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update一下好吧
比如你是写redis,那没问题了,反正每次都是set,天然幂等性
比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的id,类似订单id之类的东西,然后你这里消费到了之后,先根据这个id去比如redis里查一下,之前消费过吗?如果没有消费过,你就处理,然后这个id写redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可。
如何保证MQ的消费是幂等性的,需要结合具体的业务来看
第三问:如何保证消息的可靠性传输(如何处理消息丢失的问题)?
rabbitmq这种mq,一般来说都是承载公司的核心业务的,数据是绝对不能弄丢的
1,生产者弄丢了数据
解决一:rabbitmq事务机制一搞,基本上吞吐量会下来,因为太耗性能。 解决二:如果你要确保说写rabbitmq的消息别丢,可以开启confirm模式,在生产者那里设置开启confirm模式之后,你每次写的消息都会分配一个唯一的id,然后如果写入了rabbitmq中,rabbitmq会给你回传一个ack消息,告诉你说这个消息ok了
所以一般在生产者这块避免数据丢失,都是用confirm机制的。
2,rabbitmq弄丢了数据
必须开启rabbitmq的持久化,就是消息写入之后会持久化到磁盘,哪怕是rabbitmq自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。
3,消费端弄丢了数据
rabbitmq提供的ack机制,简单来说,就是你关闭rabbitmq自动ack,可以通过一个api来调用就行,然后每次你自己代码里确保处理完的时候,再程序里ack一把。这样的话,如果你还没处理完,不就没有ack?那rabbitmq就认为你还没处理完,这个时候rabbitmq会把这个消费分配给别的consumer去处理,消息是不会丢的。
第四问:如何保证消息的顺序性?
rabbitmq:拆分多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点;或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理
第五问:如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时,说说怎么解决?
只能操作临时紧急扩容了
解决方案一:
1)先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉
2)新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量
3)然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue
4)接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据
5)这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据
6)等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息
解决方案二:
假设1万个订单积压在mq里面,没有处理,其中1000个订单都丢了,你只能手动写程序把那1000个订单给查出来,手动发到mq里去再补一次