- CUDA:用于GPU编程的语言,跑TF的时候用了GPU,TF里面很多函数(或者依赖库)是CUDA语言编写的。不同TF版本需要不同的CUDA。
- cuDNN:NVIDIA为深度学习,矩阵运算写的一个加速库。CUDA版本必须和cuDNN版本匹配。cuDNN和TF版本匹配与否则无所谓(不过CUDA和TF版本必须匹配,所以cuDNN版本和TF版本是间接依赖关系)。
- TF:这个没什么好说的。个人经验,别用太新的,如果每次都用最新的,那么进而导致CUDA也要不断更新
- CUDA驱动版本:保持最新就好了,CUDA驱动版本要求和CUDA版本匹配,而CUDA又要求cuDNN/TF是匹配的。不过CUDA驱动版本是向下兼容的,所以保持最新就没事。
=========================================
CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++和FORTRAN。
计算行业正在从只使用CPU的“中央处理”向CPU与GPU并用的“协同处理”发展。为打造这一全新的计算典范,NVIDIA™(英伟达™)发明了CUDA(Compute Unified Device Architecture,统一计算设备架构)这一编程模型,是想在应用程序中充分利用CPU和GPU各自的优点。现在,该架构已应用于GeForce™(精视™)、ION™(翼扬™)、Quadro以及Tesla GPU(图形处理器)上,对应用程序开发人员来说,这是一个巨大的市场。
图形处理器(英语:Graphics Processing Unit,缩写:GPU),又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。