[并发理论基础] 10 | Java线程(中):创建多少线程才是合适的?


文章目录

  • [并发理论基础] 10 | Java线程(中):创建多少线程才是合适的?
  • 一、为什么要使用多线程?
  • 二、多线程的应用场景
  • 三、创建多少线程合适
  • 四、思考题
  • 五、补充


要想设置合适的线程数,首先要分析以下两个问题:

  1. 为什么要使用多线程?
  2. 多线程的应用场景有哪些?

一、为什么要使用多线程?

使用多线程,本质上就是提升程序性能。首先要明确的是:如何度量性能。

度量性能有两个最核心的指标,它们就是延迟和吞吐量。延迟指的是发出请求到收到响应这个过程的时间;延迟越短,意味着程序执行得越快,性能也就越好。 吞吐量指的是在单位时间内能处理请求的数量;吞吐量越大,意味着程序能处理的请求越多,性能也就越好。这两个指标内部有一定的联系(同等条件下,延迟越短,吞吐量越大),但是由于它们隶属不同的维度(一个是时间维度,一个是空间维度),并不能互相转换。

于是从度量的角度,提升性能主要是降低延迟,提高吞吐量

二、多线程的应用场景

要想“降低延迟,提高吞吐量”,对应的方法呢,基本上有两个方向,一个方向是优化算法,另一个方向是将硬件的性能发挥到极致。前者属于算法范畴,后者则是和并发编程息息相关了。那计算机主要有哪些硬件呢?主要是两类:一个是 I/O,一个是 CPU。简言之,在并发编程领域,提升性能本质上就是提升硬件的利用率,再具体点来说,就是提升 I/O 的利用率和 CPU 的利用率。

估计这个时候你会有个疑问,操作系统不是已经解决了硬件的利用率问题了吗?的确是这样,例如操作系统已经解决了磁盘和网卡的利用率问题,利用中断机制还能避免 CPU 轮询 I/O 状态,也提升了 CPU 的利用率。但是操作系统解决硬件利用率问题的对象往往是单一的硬件设备,而我们的并发程序,往往需要 CPU 和 I/O 设备相互配合工作,也就是说,我们需要解决 CPU 和 I/O 设备综合利用率的问题。关于这个综合利用率的问题,操作系统虽然没有办法完美解决,但是却给我们提供了方案,那就是:多线程。

下面我们用一个简单的示例来说明:如何利用多线程来提升 CPU 和 I/O 设备的利用率?假设程序按照 CPU 计算和 I/O 操作交叉执行的方式运行,而且 CPU 计算和 I/O 操作的耗时是 1:1。

如下图所示,如果只有一个线程,执行 CPU 计算的时候,I/O 设备空闲;执行 I/O 操作的时候,CPU 空闲,所以 CPU 的利用率和 I/O 设备的利用率都是 50%。

java 线程内存占用 java线程数设置多少合适_java 线程内存占用


如果有两个线程,如下图所示,当线程 A 执行 CPU 计算的时候,线程 B 执行 I/O 操作;当线程 A 执行 I/O 操作的时候,线程 B 执行 CPU 计算,这样 CPU 的利用率和 I/O 设备的利用率就都达到了 100%。

java 线程内存占用 java线程数设置多少合适_多线程_02

我们将 CPU 的利用率和 I/O 设备的利用率都提升到了 100%,会对性能产生了哪些影响呢?通过上面的图示,很容易看出:单位时间处理的请求数量翻了一番,也就是说吞吐量提高了 1 倍。此时可以逆向思维一下,如果 CPU 和 I/O 设备的利用率都很低,那么可以尝试通过增加线程来提高吞吐量

在单核时代,多线程主要就是用来平衡 CPU 和 I/O 设备的。如果程序只有 CPU 计算,而没有 I/O 操作的话,多线程不但不会提升性能,还会使性能变得更差,原因是增加了线程切换的成本。但是在多核时代,这种纯计算型的程序也可以利用多线程来提升性能。为什么呢?因为利用多核可以降低响应时间。

为便于你理解,这里我举个简单的例子说明一下:计算 1+2+… … +100 亿的值,如果在 4 核的 CPU 上利用 4 个线程执行,线程 A 计算 [1,25 亿),线程 B 计算 [25 亿,50 亿),线程 C 计算 [50,75 亿),线程 D 计算 [75 亿,100 亿],之后汇总,那么理论上应该比一个线程计算 [1,100 亿] 快将近 4 倍,响应时间能够降到 25%。一个线程,对于 4 核的 CPU,CPU 的利用率只有 25%,而 4 个线程,则能够将 CPU 的利用率提高到 100%。

java 线程内存占用 java线程数设置多少合适_多线程_03

三、创建多少线程合适

创建多少线程合适,要看多线程具体的应用场景。我们的程序一般都是 CPU 计算和 I/O 操作交叉执行的,由于 I/O 设备的速度相对于 CPU 来说都很慢,所以大部分情况下,I/O 操作执行的时间相对于 CPU 计算来说都非常长,这种场景我们一般都称为 I/O 密集型计算;和 I/O 密集型计算相对的就是 CPU 密集型计算了,CPU 密集型计算大部分场景下都是纯 CPU 计算。I/O 密集型程序和 CPU 密集型程序,计算最佳线程数的方法是不同的。

下面我们对这两个场景分别说明。

对于 CPU 密集型计算,多线程本质上是提升多核 CPU 的利用率,所以对于一个 4 核的 CPU,每个核一个线程,理论上创建 4 个线程就可以了,再多创建线程也只是增加线程切换的成本。所以,对于 CPU 密集型的计算场景,理论上“线程的数量 =CPU 核数”就是最合适的。不过在工程上,线程的数量一般会设置为“CPU 核数 +1”,这样的话,当线程因为偶尔的内存页失效或其他原因导致阻塞时,这个额外的线程可以顶上,从而保证 CPU 的利用率。

对于 I/O 密集型的计算场景,比如前面我们的例子中,如果 CPU 计算和 I/O 操作的耗时是 1:1,那么 2 个线程是最合适的。如果 CPU 计算和 I/O 操作的耗时是 1:2,那多少个线程合适呢?是 3 个线程,如下图所示:CPU 在 A、B、C 三个线程之间切换,对于线程 A,当 CPU 从 B、C 切换回来时,线程 A 正好执行完 I/O 操作。这样 CPU 和 I/O 设备的利用率都达到了 100%。

上面这段的背景是:一个线程执行,CPU执行计算使用的时间和线程等待I/O的时间(可以释放CPU)是1:2。
如果只有一个线程执行,那CPU的利用率为 1/3=33%。
在增加并发度为三个线程后,CPU利用率为100%。有一个隐含的条件是:在增加为3个线程并发的情况下,一个线程执行所需CPU执行计算使用的时间和 线程等待I/O的时间还是1:2,也就是要求在三个线程的场景下(同时会有两个线程请求I/O),I/O时间不能增加。
同时会有两个线程请求I/O的情况,I/O时间不增加,肯定未达到I/O的瓶颈,有两种情况:

  1. 要么是I/O硬件性能不是瓶颈,比如外部服务请求,网卡性能OK,外部服务慢,等待外部服务响应的时候,I/O硬件资源也是空闲。
  2. 要么是新增硬件。

java 线程内存占用 java线程数设置多少合适_应用场景_04


通过上面这个例子,我们会发现,对于 I/O 密集型计算场景,最佳的线程数是与程序中 CPU 计算和 I/O 操作的耗时比相关的,我们可以总结出这样一个公式:

最佳线程数 =1 +(I/O 耗时 / CPU 耗时)

我们令 R=I/O 耗时 / CPU 耗时,综合上图,可以这样理解:当线程 A 执行 IO 操作时,另外 R 个线程正好执行完各自的 CPU 计算。这样 CPU 的利用率就达到了 100%。

可以用 apm 工具测试io耗时和cpu耗时

不过上面这个公式是针对单核 CPU 的,至于多核 CPU,也很简单,只需要等比扩大就可以了,计算公式如下:

最佳线程数 =CPU 核数 * [ 1 +(I/O 耗时 / CPU 耗时)]

注意:理论值仅仅适用部署一个服务的场景。理论值是个很好的开始,是不是合适还得压测

四、思考题

有些同学对于最佳线程数的设置积累了一些经验值,认为对于 I/O 密集型应用,最佳线程数应该为:2 * CPU 的核数 + 1,你觉得这个经验值合理吗?

答:
从理论上来讲,这个经验值一定是靠不住的。但是经验值对于很多“I/O 耗时 / CPU 耗时”不太容易确定的系统来说,却是一个很好到初始值。
最佳线程数最终还是靠压测来确定的,实际工作中大家面临的系统,“I/O 耗时 / CPU 耗时”往往都大于 1,所以基本上都是在这个初始值的基础上增加。增加的过程中,应关注线程数是如何影响吞吐量和延迟的。一般来讲,随着线程数的增加,吞吐量会增加,延迟也会缓慢增加;但是当线程数增加到一定程度,吞吐量就会开始下降,延迟会迅速增加。这个时候基本上就是线程能够设置的最大值了。

五、补充

  1. 实际应用最后还是要做压力测试来确定线程数,
  2. 公式上忽略了线程数增加带来的cpu消耗,性能优化还是要定量比较好,这样不会盲目,比如io已经成为了瓶颈,增加线程或许带来不了性能提升,这个时候是不是可以考虑用cpu换取带宽,压缩数据,或者逻辑上少发送一些。
  3. x86架构的CPU是拥有超程技术的,也就是一个核可以当成两个使用(AMD的却没有),4核8线程的处理器使用Runtime.availableProcessors()结果是8,超线程技术属于硬件层面上的并发,从cpu硬件来看是一个物理核心有两个逻辑核心,但因为缓存、执行资源等存在共享和竞争,所以两个核心并不能并行工作。超线程技术统计性能提升大概是30%左右,并不是100%。另外,不管设置成4还是8,现代操作系统层面的调度应该是按逻辑核心数,也就是8来调度的,具体情况需要根据应用性能和资源的使用情况进行调整。工作中都是按照逻辑核数来的,理论值和经验值只是提供个指导,实际上还是要靠压测。
  4. 理论加经验加实际场景,比如现在大多数公司的系统是以服务的形式来通过docker部署的,每个docker服务其实对应部署的就一个服务,这样的情况下是可以按照理论为基础,再加上实际情况来设置线程池大小的,当然通过各种监控来调整是最好的,但是实际情况是但服务几十上百,除非是核心功能,否则很难通过监控指标来调整线程池大小。理论加经验起码不会让设置跑偏太多,还有就是服务中的各种线程池统一管理是很有必要的
  5. About Pool Sizing上面提供了connections = ((core_count * 2) + effective_spindle_count)公式