文章目录
- 门控循环单元(GRU)
- 1 - 门控隐状态
- 重置门和更新门
- 候选隐状态
- 隐状态
- 2 - 从零开始实现
- 初始化模型参数
- 定义模型
- 训练与预测
- 3 - 简洁实现
- 4 - 小结
门控循环单元(GRU)
循环神经网络在计算梯度、矩阵连续乘积导致梯度消失或爆炸的问题。下面我们简单思考一下这种梯度异常在实践中的意义:
- 我们可能会遇到这样的情况:早期观测值对预测所有未来观测值具有非常重要的意义。考虑一个极端情况,其中第一个观测值包含一个校验和,目标是在序列的末尾辨别校验和是否正确。在这种情况下,第一个词元的影响至关重要。我们希望有某些机制能够在一个记忆元里存储重要的早期信息。若没有这样的机制,我们将不得不给这个观测值指定一个非常大的梯度,因为它会影响所有后续的观测值
- 我们可能会遇到这样的情况:一些词元没有相关的观测值。例如,在对网页内容进行情感分析时,可能有写一些辅助HTML代码与网页传达的情绪无关。我们希望有一些机制来跳过隐状态表示中的此类词元
- 我们可能会遇到这样的情况:序列的各个部分之间存在逻辑中断。例如,书的章节之间可能会有过度存在,或者证券的熊市和牛市之间可能会有过渡存在。在这种情况下,最好一种方法来重置我们的内部状态表示
在学术界已经提出了许多方法来解决这类问题,其中最早的方法是LSTM,GRU是一个稍微简化的变体,通常能够提供同等的效果,并且计算的速度明显更快。由于GRU更简单,我们将从它开始解读
1 - 门控隐状态
门控循环单元与普通的循环神经网络之间的关键区别在于:前者支持隐状态的门控。这意味着模型有专门的机制来确定应该何时更新隐状态,以及应该何时重置隐状态。这些机制是可学习的,并且能够解决上面列出的问题。列出,若第一个词元非常重要,模型将学会在第一次观测之后不更新隐状态。同样,模型也可以学会跳过不相关的临时观测。最后,模型还将学会在需要的时候重置隐状态,下面我们将详细讨论各类门控
重置门和更新门


候选隐状态

隐状态

总之,门控循环单元具有以下两个显著特征:
- 重置门有助于捕获序列中的短期依赖关系‘
- 更新门有助于捕获序列中的长期依赖关系
2 - 从零开始实现
为了更好理解门控循环单元模型,我们从零开始实现它,首先读取时间机器数据集
import torch
from torch import nn
from d2l import torch as d2l
batch_size,num_steps = 32,35
train_iter,vocab = d2l.load_data_time_machine(batch_size,num_steps)初始化模型参数
我们从标准差为0.01的高斯分布中提取权重,并将偏置项设为0,超参数num_hiddens定义隐藏单元的数量,实例化与更新门、重置门、候选隐状态和输出层相关的所有权重和偏置
def get_params(vocab_size,num_hiddens,device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape,device=device)*0.01
def three():
return (normal((num_inputs,num_hiddens)),
normal((num_hiddens,num_hiddens)),
torch.zeros(num_hiddens,device=device))
W_xz,W_hz,b_z = three() # 更新门参数
W_xr,W_hr,b_r = three() # 重置门参数
W_xh,W_hh,b_h = three() # 候选隐状参数
# 输出层参数
W_hq = normal((num_hiddens,num_outputs))
b_q = torch.zeros(num_outputs,device=device)
# 附加梯度
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params定义模型
现在我们将定义隐状态的初始化函数init_gru_state。与以前定义的init_rnn_state函数一样,此函数返回一个形状为(批量大小,隐藏单元个数)的张量,张量的值全部为0
def init_gru_state(batch_size,num_hiddens,device):
return (torch.zeros((batch_size,num_hiddens),device=device),)现在我们准备定义门控循环单元模型,模型的架构与基本的循环神经网络单元是相同的,只是权重更新公式更为复杂
def gru(inputs,state,params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:
Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = H @ W_hq + b_q
outputs.append(Y)
return torch.cat(outputs,dim=0),(H,)训练与预测
我们分别打印输出训练集的困惑度,以前前缀“time traveler”和“traveler”的预测序列上的困惑度
vocab_size,num_hiddens,device = len(vocab),256,d2l.try_gpu()
num_epochs,lr = 500,1
model = d2l.RNNModelScratch(len(vocab),num_hiddens,device,get_params,init_gru_state,gru)
d2l.train_ch8(model,train_iter,vocab,lr,num_epochs,device)perplexity 1.1, 42276.3 tokens/sec on cuda:0
time traveller for so it will be convenient to speak of himwas e
travelleryou can show black is white by argument said filby[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iXCpuvTE-1662903525843)(https://yingziimage.oss-cn-beijing.aliyuncs.com/img/202209112130155.svg)]
3 - 简洁实现
高级API包含了前文介绍的所有配置细节,所以我们可以直接实例化门控循环单元模型。这段代码的运行速度要块的多,因为它使用的是编译好的运算符而不是Python来处理之前阐述的许多细节
num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs,num_hiddens)
model = d2l.RNNModel(gru_layer,len(vocab))
model = model.to(device)
d2l.train_ch8(model,train_iter,vocab,lr,num_epochs,device)perplexity 1.0, 444492.6 tokens/sec on cuda:0
time travellerit s against reason said filbywhat not sai move ab
travelleryou can show black is white by argument said filby4 - 小结
- 门控循环神经网络可以更好地捕获时间步距离很长的序列上的依赖关系
- 重置门有助于捕获序列中的短期依赖关系
- 更新门有助于捕获序列中的长期依赖关系
- 重置门打开时,门控循环单元包含基本循环神经网络;更新门打开时,门控循环单元可以跳过子序列
















