一.Comparable 接口介绍
Java 提供了一个接口 Comparable 用来定义排序规则
二.冒泡排序 ( Bubble Sort )
排序原理:
1. 比较相邻的元素。如果前一个元素比后一个元素大,就交换这两个元素的位置。
2. 对每一对相邻元素做同样的工作,从开始第一对元素到结尾的最后一对元素。最终最后位置的元素就是最大值。
简单来说,就是相邻的元素相互比较,直到排序结束。
冒泡排序的方法:
Bubble() :创建 Bubble 对象
1.public static void sort(Comparable[] a):对数组内的元素进行排序
2.private static boolean greater(Comparable v,Comparable w):判断v 是否大于 w
3.private static void exch(Comparable[] a,int i,int j):交换a 数组中,索引 i 和索引 j 处的值
冒泡排序的时间复杂度分析 冒泡排序使用了双层 for循环,其中内层循环的循环体是真正完成排序的代码,所以我们分析冒泡排序的时间复杂度,主要分析一下内层循环体的执行次数即可。保留函数中的最高阶项那么最终冒泡排序的时间复杂度为 O(N^2).
代码实现及测试:
三.选择排序(Selection sort )
排序原理:
1. 每一次遍历的过程中,都假定第一个索引处的元素是最小值,和其他索引处的值依次进行比较,如果当前索引处的值大于其他某个索引处的值,则假定其他某个索引处的值为最小值,最后可以找到最小值所在的索引
2.交换第一个索引处和最小值所在的索引处的值
选择排序的方法:
Selection() :创建 Selection 对象
1.public static void sort(Comparable[] a) :对数组内的元素进行排序
2.private static boolean greater(Comparable v,Comparable w): 判断 v 是否大于 w
3.private static void exch(Comparable[] a,int i,int j) :交换 a 数组中,索引 i 和索引 j 处的值
选择排序的时间复杂度分析:
选择排序使用了双层 for循环,其中外层循环完成了数据交换,内层循环完成了数据比较,所以我们分别统计数据 交换次数和数据比较次数。保留最高阶项,去除常数因子,时间复杂度为 O(N^2);
代码实现:
四.插入排序(Insertion sort )
排序原理:
1.把所有的元素分为两组,已经排序的和未排序的,刚开始时将数组的首元素作为已排序区间的第一个元素,然后每次取未排序区间的元素在已排序区间找到合适的位置插入 ;
2. 找到未排序的组中的第一个元素,向已经排序的组中进行插入;
3. 倒叙遍历已经排序的元素,依次和待插入的元素进行比较,直到找到一个元素小于等于待插入元素,那么就把待插入元素放到这个位置,其他的元素向后移动一位;
插入排序方法:
构造方法:Insertion():创建Insertion对象
成员方法:
1.public static void sort(Comparable[] a) :对数组内的元素进行排序
2.private static boolean greater(Comparable v,Comparable w): 判断 v 是否大于 w
3.private static void exch(Comparable[] a,int i,int j) :交换 a 数组中,索引 i 和索引 j 处的值
插入排序的时间复杂度分析
插入排序使用了双层 for循环,其中内层循环的循环体是真正完成排序的代码,所以,我们分析插入排序的时间复 杂度,主要分析一下内层循环体的执行次数即可。保留函数中的最高阶项那么最终插入排序的时间复杂度为 O(N^2).
代码实现:
五.希尔排序(Shell sorting)
排序原理:即对插入排序的优化,插排的 元素是一个一个往后搬,损耗较大;现在是一次走好几步;
1.选定一个增长量h ,按照增长量 h 作为数据分组的依据,对数据进行分组;
2.对分好组的每一组数据完成插入排序;
3.减小增长量,最小减为1 ,重复第二步操作。
4.增量h一般公式:h=n/2,向下取整;增量缩小公式:h=h/2,向下取整,直到增量为1排序结束
希尔排序方法:
构造方法:Shell():创建Shell对象
成员方法:1.public static void sort(Comparable[] a):对数组内的元素进行排序
2.private static boolean greater(Comparable v,Comparable w):判断v是否大于w
3.private static void exch(Comparable[] a,int i,int j):交换a数组中,索引i和索引j处的值
代码实现:
六.归并排序
排序原理:先分后治
1. 尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止。
2.将相邻的两个子组进行合并成一个有序的大组;
3. 不断的重复步骤 2 ,直到最终只有一个组为止。
归并排序方法:
构成方法: Merge() :创建 Merge 对象
成员方法:
1.public static void sort(Comparable[] a) :对数组内的元素进行排序
2.private static void sort(Comparable[] a, int lo, int hi) :对数组 a 中从索引 lo 到索引 hi 之间的元素进
行排序
3.private static void merge(Comparable[] a, int lo, int mid, int hi): 从索引 lo 到所以 mid 为一个子组,从索引mid+1 到索引 hi 为另一个子组,把数组 a 中的这两个子组的数据合并成一个有序的大组(从索引lo 到索引 hi )
4.private static boolean less(Comparable v,Comparable w): 判断 v 是否小于 w
5.private static void exch(Comparable[] a,int i,int j) :交换 a 数组中,索引 i 和索引 j 处的值
成员变量:private static Comparable[] assist :完成归并操作需要的辅助数组
时间复杂度分析: 假设元素的个数为 n ,那么使用归并排序拆分的次数为 log2(n), 所以 共log2(n)层 ,
最终得出的归并排序的时间复杂度为:层数* 2^层数=n*层数,即log2(n)* 2^(log2(n))= log2(n)*n ,根据大 O 推导法则,忽略底数,最终归并排序的时间复杂度为O(nlogn);
代码实现:
七.快速排序:
排序原理:
1. 首先 设定一个分界值 ,通过该分界值将数组分成左右两部分,为了方便,分界值可以取第一个数;
2. 将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边 。
3.然后,左边和右边的数据独立排序。对于左边数据,再取一个分界值,再分成左右两部分,同样在左边放置较小值,右边放置较大值。右边数据也做相同操作。
4. 重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。
快速排序方法:
构造方法:
Quick() :创建 Quick 对象
成员方法:
1.public static void sort(Comparable[] a) :对数组内的元素进行排序
2.private static void sort(Comparable[] a, int lo, int hi) :对数组 a 中从索引 lo 到索引 hi 之间的元素
进行排序
3.public static int partition(Comparable[] a,int lo,int hi): 对数组 a 中,从索引 lo 到索引 hi 之间的元
素进行分组,并返回分组界限对应的索引
4.private static boolean less(Comparable v,Comparable w): 判断 v 是否小于 w
5.private static void exch(Comparable[] a,int i,int j) :交换 a 数组中,索引 i 和索引 j 处的值
时间复杂度分析:
快速排序的一次切分从两头开始交替搜索,直到left 和 right 重合。所以一次切分算法的时间复杂度为 O(n), 但整个快速排序的时间复杂度和切分的次数相关。
最优情况 :每一次切分选择的基准数字刚好将当前序列等分, 共切分 logn 次,所以 时间复杂度为 O(nlogn);
最坏情况 :每次切分选择的数是数组n中的最大或最小数,那么总共就得切分n 次,所以,最坏情况下,快速排序的时间复杂度为 O(n^2);
代码实现:
八.排序算法的稳定性
在使用某种排序算法排序后,依旧能够保证A元素在B元素的前面,那么就说该算法是稳定的。
常见的算法中,冒泡排序,插入排序,归并排序都是稳定的;
而选择排序,希尔排序,快速排序都是不稳定的。
九.排序算法的时空复杂度总结