本文首先举例阐述了两种排序方法的操作步骤,然后列出了用python进行的实现过程,最后对桶式排序方法的优劣进行了简单总结。

一、桶排序:

排序一个数组[5,3,6,1,2,7,5,10]

值都在1-10之间,建立10个桶:

[0 0 0 0 0 0 0 0 0 0] 桶

[1 2 3 4 5 6 7 8 9 10] 桶代表的值

遍历数组,第一个数字5,第五个桶加1

[0 0 0 0 1 0 0 0 0 0]

第二个数字3,第三个桶加1

[0 0 1 0 1 0 0 0 0 0]

遍历后

[1 1 1 0 2 1 1 0 0 1]

输出

[1 2 3 5 5 6 7 10]

代码:

def bucket_sort(lst):
    buckets = [0] * ((max(lst) - min(lst))+1)
    for i in range(len(lst)):
        buckets[lst[i]-min(lst)] += 1
    res=[]
    for i in range(len(buckets)):
        if buckets[i] != 0:
            res += [i+min(lst)]*buckets[i]
    return res

二、基数排序:

例如,对如下数据序列进行排序。

192,221,12,23

可以观察到它的每个数据至多只有3位,因此可以将每个数据拆分成3个关键字:百位(高位)、十位、个位(低位)。如果按照习惯思维,会先比较百位,百位大的数据大,百位相同的再比较十位,十位大的数据大;最后再比较个位。基数排序方法对任一子关键字排序时必须借助于另一种排序方法,而且这种排序方法必须是稳定的。对于多关键字拆分出来的子关键字,它们一定位于0-9这个可枚举的范围内,这个范围不大,因此用桶式排序效率非常好。

代码:

from random import randint
def radix_sort(lis,d):
    for i in xrange(d):#d轮排序
        s = [[] for k in xrange(10)]#因为每一位数字都是0~9,故建立10个桶
        for j in lis:
            s[j/(10**i)%10].append(i)
        li = [a for b in s for a in b]
    return li

对数组中的元素按照从低位到高位排序,对于[192,221,12,23]第一轮按照个位数字相同的放在一组,是s[1] =[221],s[2]=[192,12],s[3]=23,第二轮按照十位数字进行排序,s[1]=[12],s[2]=[221,23],s[9]=[192],第三轮按照百位数字进行排序,s[0]=[12,23],s[1]=[192],s[2]=[221]

总结:

桶排序与基数排序常作为桶式排序出现,基数排序进行了多轮的桶排序。桶式排序不再是一种基于比较的排序方法,它是一种比较巧妙的排序方式,但这种排序方式需要待排序的序列满足以下两个特征:待排序列所有的值处于一个可枚举的范围之类;待排序列所在的这个可枚举的范围不应该太大,否则排序开销太大。可以用于学生成绩的排序,因为在若干学生中成绩的范围仅在100以内。

桶式排序的空间开销较大,它需要两个数组,第1个buckets数组用于记录“落入”各桶中元素的个数,进而保存各元素在有序序列中的位置,第2个数组用于缓存待排数据。它只能排整形数组。而且当k较大,而数组长度n较小,即k>>n时,辅助数组C[k+1]的空间消耗较大。