OpenCV支持的目标检测的方法是利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification)。注意,新版本的C++接口除了Haar特征以外也可以使用LBP特征。

先介绍一下相关的结构,级联分类器的计算特征值的基础类FeatureEvaluator,功能包括读操作read、复制clone、获得特征类型getFeatureType,分配图片分配窗口的操作setImage、setWindow,计算有序特征calcOrd,计算绝对特征calcCat,创建分类器特征的结构create函数。级联分类器类CascadeClassifier。目标级联矩形的分组函数groupRectangles。

接下来,我尝试使用CascadeClassifier这个级联分类器类检测视频流中的目标(haar支持的目标有人脸、人眼、嘴、鼻、身体。这里尝试比较成熟的人脸和眼镜)。用load函数加载XML分类器文件(目前提供的分类器包括Haar分类器和LBP分类器(LBP分类器数据较少))具体步骤如下:

这里再补充一点:后来我又进行了一些实验,对正面人脸分类器进行了实验,总共有4个,alt、alt2、alt_tree、default。对比下来发现alt和alt2的效果比较好,alt_tree耗时较长,default是一个轻量级的,经常出现误检测。所以还是推荐大家使用haarcascade_frontalface_atl.xml和haarcascade_frontalface_atl2.xml。

1)加载级联分类器

调用CascadeClassifier类成员函数load实现,代码为:

CascadeClassifier face_cascade;
face_cascade.load("haarcascade_frontalface_alt.xml");



2)读取视频流

这部分比较基础啦~~从文件中读取图像序列,读取视频文件,读取摄像头视频流看过我之前的文章,这3种方法应该了然于心。

3)对每一帧使用该分类器

这里先将图像变成灰度图,对它应用直方图均衡化,做一些预处理的工作。接下来检测人脸,调用detectMultiScale函数,该函数在输入图像的不同尺度中检测物体,参数image为输入的灰度图像,objects为得到被检测物体的矩形框向量组,scaleFactor为每一个图像尺度中的尺度参数,默认值为1.1,minNeighbors参数为每一个级联矩形应该保留的邻近个数(没能理解这个参数,-_-|||),默认为3,flags对于新的分类器没有用(但目前的haar分类器都是旧版的,CV_HAAR_DO_CANNY_PRUNING利用Canny边缘检测器来排除一些边缘很少或者很多的图像区域,CV_HAAR_SCALE_IMAGE就是按比例正常检测,CV_HAAR_FIND_BIGGEST_OBJECT只检测最大的物体,CV_HAAR_DO_ROUGH_SEARCH只做初略检测),默认为0.minSize和maxSize用来限制得到的目标区域的范围。这里调用的代码如下:

face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );



4)显示目标

这个也比较简单,调用ellips函数将刚才得到的faces矩形框都显示出来

更进一步,也可以在得到的每一幅人脸中得到人眼的位置,调用的分类器文件为haarcascade_eye_tree_eyeglasses.xml,先将脸部区域选为兴趣区域ROI,重复上诉步骤即可,这里就不详细介绍了。当然,感兴趣的朋友也可以试试其他的xml文件作为分类器玩一下啊,感觉LBP特征虽然xml文件的大小很小,但效果还可以,不过我没有做过多的测试。光说不练假把式,最后贴上效果图和源代码的下载地址

opencv 训练级联分类器 opencv分类器物体识别_classification