上一节已经介绍了Android 动画:Android 动画深入学习。这节介绍动画的原理。

View 动画

属性动画

View 动画

initialize() —— 动画的初始化

applyTransformation() —— 方法中都是进行矩阵操作(绘制过程)

View 动画的位置一直就没改变,而是在绘制的时候通过矩阵来处理变换。自始至终 View 的 LayoutParams 参数根本没有改变。所以 View 动画其实就是一种(假象)

View 动画的简单使用,以平移动画为例

// 平移动画
TranslateAnimation translateAnimation = new TranslateAnimation(0, 0, 200, 200);
translateAnimation.setDuration(1000);
// 开始动画
view.startAnimation(translateAnimation);
先看 view 的 startAnimation 方法
public void startAnimation(Animation animation) {
animation.setStartTime(Animation.START_ON_FIRST_FRAME);
// 这个方法,会给 view 自己内部设置一个 Animation 对象(内部变量为 mCurrentAnimation)
setAnimation(animation);
invalidateParentCaches();
// 通知 View 进行刷新界面
invalidate(true);
}

调用 invalidate() 方法之后,会让 ViewRootImpl 调用 scheduleTraversals() 发起一个重绘请求,通过 Choreographer 发送一个异步消息,同时在 Choreographer 中处理消息,最终回调到 performTraversals() 执行重绘。

当执行 performTraversals() 方法后,会进行重绘,最终会调用 view 的 draw() 函数进行绘制,在绘制函数中如果发现 getAnimation() 不为 null,将进行动画绘制,执行 applyLegacyAnimation() 方法

private boolean applyLegacyAnimation(ViewGroup parent, long drawingTime,
Animation a, boolean scalingRequired) {
Transformation invalidationTransform;
final int flags = parent.mGroupFlags;
final boolean initialized = a.isInitialized();
if (!initialized) {
// 动画的初始化
a.initialize(mRight - mLeft, mBottom - mTop, parent.getWidth(), parent.getHeight());
a.initializeInvalidateRegion(0, 0, mRight - mLeft, mBottom - mTop);
if (mAttachInfo != null) a.setListenerHandler(mAttachInfo.mHandler);
onAnimationStart();
}
final Transformation t = parent.getChildTransformation();
boolean more = a.getTransformation(drawingTime, t, 1f);
if (scalingRequired && mAttachInfo.mApplicationScale != 1f) {
if (parent.mInvalidationTransformation == null) {
parent.mInvalidationTransformation = new Transformation();
}
invalidationTransform = parent.mInvalidationTransformation;
// 执行动画操作
a.getTransformation(drawingTime, invalidationTransform, 1f);
} else {
invalidationTransform = t;
}
if (more) {
if (!a.willChangeBounds()) {
if ((flags & (ViewGroup.FLAG_OPTIMIZE_INVALIDATE | ViewGroup.FLAG_ANIMATION_DONE)) ==
ViewGroup.FLAG_OPTIMIZE_INVALIDATE) {
parent.mGroupFlags |= ViewGroup.FLAG_INVALIDATE_REQUIRED;
} else if ((flags & ViewGroup.FLAG_INVALIDATE_REQUIRED) == 0) {
// The child need to draw an animation, potentially offscreen, so
// make sure we do not cancel invalidate requests
parent.mPrivateFlags |= PFLAG_DRAW_ANIMATION;
parent.invalidate(mLeft, mTop, mRight, mBottom);
}
} else {
if (parent.mInvalidateRegion == null) {
parent.mInvalidateRegion = new RectF();
}
final RectF region = parent.mInvalidateRegion;
a.getInvalidateRegion(0, 0, mRight - mLeft, mBottom - mTop, region,
invalidationTransform);
// The child need to draw an animation, potentially offscreen, so
// make sure we do not cancel invalidate requests
parent.mPrivateFlags |= PFLAG_DRAW_ANIMATION;
final int left = mLeft + (int) region.left;
final int top = mTop + (int) region.top;
parent.invalidate(left, top, left + (int) (region.width() + .5f),
top + (int) (region.height() + .5f));
}
}
return more;
}

可以在上面的代码中看到,会调用用 Animation 的 initialize() 方法以及 getTransformation() 方法 ,在 getTransformation() 中会调用 applyTransformation() 方法,最终动画的最重要的两个方法都调用了,完成动画的操作。

属性动画

属性动画的简单使用,以平移动画为例 ObjectAnimator 为例

ObjectAnimator.ofFloat(view, "translationY", 500).start();
ofFloat()
public static ObjectAnimator ofFloat(Object target, String propertyName, float... values) {
ObjectAnimator anim = new ObjectAnimator(target, propertyName);
anim.setFloatValues(values);
return anim;
}
private ObjectAnimator(Object target, String propertyName) {
setTarget(target);
setPropertyName(propertyName);
}
public void setTarget(@Nullable Object target) {
final Object oldTarget = getTarget();
if (oldTarget != target) {
if (isStarted()) {
cancel();
}
// 保留一个 view 的弱引用对象
mTarget = target == null ? null : new WeakReference(target);
// New target should cause re-initialization prior to starting
mInitialized = false;
}
}
public void setPropertyName(@NonNull String propertyName) {
// ..................
mPropertyName = propertyName;
// New property/values/target should cause re-initialization prior to starting
mInitialized = false;
}

首先在 ObjectAnimator 的构造函数中完成了 target 及 propertyName 设置,然后调用 setFloatValues()

public void setFloatValues(float... values) {
if (mValues == null || mValues.length == 0) {
// No values yet - this animator is being constructed piecemeal. Init the values with
// whatever the current propertyName is
if (mProperty != null) {
setValues(PropertyValuesHolder.ofFloat(mProperty, values));
} else {
setValues(PropertyValuesHolder.ofFloat(mPropertyName, values));
}
} else {
super.setFloatValues(values);
}
}

该方法把我们传入的 mPropertyName 和 values 对象构造为一个 PropertyValuesHolder 对象,在 PropertyValuesHolder 的 ofFloat 方法中,返回一个 FloatPropertyValuesHolder 对象,

public static PropertyValuesHolder ofFloat(Property, Float> property, float... values) {
return new FloatPropertyValuesHolder(property, values);
}
public FloatPropertyValuesHolder(Property property, float... values) {
super(property);
setFloatValues(values);
if (property instanceof FloatProperty) {
mFloatProperty = (FloatProperty) mProperty;
}
}
public void setFloatValues(float... values) {
super.setFloatValues(values);
mFloatKeyframes = (Keyframes.FloatKeyframes) mKeyframes;
}

在该对象的产生过程中会调用 setFloatValues 方法,存储了我们的 mValueType ,此外还存了一个 mKeyframes

public void setFloatValues(float... values) {
mValueType = float.class;
mKeyframes = KeyframeSet.ofFloat(values);
}
// 根据提供的数字序列得到动画的核心帧集合
public static KeyframeSet ofFloat(float... values) {
boolean badValue = false;
int numKeyframes = values.length; //有多少个数字就有多少帧
FloatKeyframe keyframes[] = new FloatKeyframe[Math.max(numKeyframes,2)];
if (numKeyframes == 1) { //如果只传入一个数字,那么该数字就是结束帧的值
keyframes[0] = (FloatKeyframe) Keyframe.ofFloat(0f);
keyframes[1] = (FloatKeyframe) Keyframe.ofFloat(1f, values[0]);
if (Float.isNaN(values[0])) {
badValue = true;
}
} else { //如果传入多个数字,那么可以将整个动画时间间隔均分,每个数字按顺序在每个时间比率上占据一个属性值
keyframes[0] = (FloatKeyframe) Keyframe.ofFloat(0f, values[0]);
for (int i = 1; i < numKeyframes; ++i) {
keyframes[i] =
(FloatKeyframe) Keyframe.ofFloat((float) i / (numKeyframes - 1), values[i]);
if (Float.isNaN(values[i])) {
badValue = true;
}
}
}
if (badValue) {
Log.w("Animator", "Bad value (NaN) in float animator");
}
return new FloatKeyframeSet(keyframes);
}

上面得到的帧只是动画的几个核心帧,而不是动画的全部帧,那中间的其他帧是 KeyframeSet 的 getValue 方法中计算

public Object getValue(float fraction) {
// Special-case optimization for the common case of only two keyframes
if (mNumKeyframes == 2) {//1.处理只有2帧的情况
if (mInterpolator != null) {
//先调用TimeInterpolator函数
fraction = mInterpolator.getInterpolation(fraction);
}
//再调用TypeEvaluator函数
return mEvaluator.evaluate(fraction, mFirstKeyframe.getValue(), mLastKeyframe.getValue());
}
//2.处理上冲和下冲的情况
if (fraction <= 0f) {
final Keyframe nextKeyframe = mKeyframes.get(1);
final TimeInterpolator interpolator = nextKeyframe.getInterpolator();
if (interpolator != null) {
fraction = interpolator.getInterpolation(fraction);
}
final float prevFraction = mFirstKeyframe.getFraction();
float intervalFraction = (fraction - prevFraction) / (nextKeyframe.getFraction() - prevFraction);
return mEvaluator.evaluate(intervalFraction, mFirstKeyframe.getValue(), nextKeyframe.getValue());
} else if (fraction >= 1f) {
final Keyframe prevKeyframe = mKeyframes.get(mNumKeyframes - 2);
final TimeInterpolator interpolator = mLastKeyframe.getInterpolator();
if (interpolator != null) {
fraction = interpolator.getInterpolation(fraction);
}
final float prevFraction = prevKeyframe.getFraction();
float intervalFraction = (fraction - prevFraction) / (mLastKeyframe.getFraction() - prevFraction);
return mEvaluator.evaluate(intervalFraction, prevKeyframe.getValue(), mLastKeyframe.getValue());
}
//3.处理正常的多帧的情况
Keyframe prevKeyframe = mFirstKeyframe;
//首先要遍历前面计算出的主要KeyFrame集合,看当前的fraction是处在哪个区间的
for (int i = 1; i < mNumKeyframes; ++i) {
Keyframe nextKeyframe = mKeyframes.get(i);
if (fraction < nextKeyframe.getFraction()) {
final TimeInterpolator interpolator = nextKeyframe.getInterpolator();
final float prevFraction = prevKeyframe.getFraction();
//将当前的fraction折算成在这个区间内的时间比率,这个计算有意思吧
float intervalFraction = (fraction - prevFraction) / (nextKeyframe.getFraction() - prevFraction);
// Apply interpolator on the proportional duration.
if (interpolator != null) {
//先调用TimeInterpolator函数
intervalFraction = interpolator.getInterpolation(intervalFraction);
}
//再调用TypeEvaluator函数
return mEvaluator.evaluate(intervalFraction, prevKeyframe.getValue(), nextKeyframe.getValue());
}
prevKeyframe = nextKeyframe;
}
// shouldn't reach here
return mLastKeyframe.getValue();
}

到此,PropertyValuesHolder.ofFloat 在彻底返回,可以看到这个过程中,我们成功的为 PropertyValuesHolder 对象赋值了 propertyName、valueType、keyframeSet。然后把返回的对象传到 setValues() 中。

public void setValues(PropertyValuesHolder... values) {
// 首先记录了mValues,
int numValues = values.length;
mValues = values;
// 然后通过一个mValueMap记录:key为属性的名称,值为PropertyValuesHolder 。
mValuesMap = new HashMap(numValues);
for (int i = 0; i < numValues; ++i) {
PropertyValuesHolder valuesHolder = values[i];
mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
}
// New property/values/target should cause re-initialization prior to starting
mInitialized = false;
}
start()

当一个动画调用 start() 方法,启动时,

public void start() {
// See if any of the current active/pending animators need to be canceled
AnimationHandler handler = sAnimationHandler.get();
if (handler != null) {
int numAnims = handler.mAnimations.size();
for (int i = numAnims - 1; i >= 0; i--) {
if (handler.mAnimations.get(i) instanceof ObjectAnimator) {
ObjectAnimator anim = (ObjectAnimator) handler.mAnimations.get(i);
if (anim.mAutoCancel && hasSameTargetAndProperties(anim)) {
anim.cancel();
}
}
}
numAnims = handler.mPendingAnimations.size();
for (int i = numAnims - 1; i >= 0; i--) {
if (handler.mPendingAnimations.get(i) instanceof ObjectAnimator) {
ObjectAnimator anim = (ObjectAnimator) handler.mPendingAnimations.get(i);
if (anim.mAutoCancel && hasSameTargetAndProperties(anim)) {
anim.cancel();
}
}
}
numAnims = handler.mDelayedAnims.size();
for (int i = numAnims - 1; i >= 0; i--) {
if (handler.mDelayedAnims.get(i) instanceof ObjectAnimator) {
ObjectAnimator anim = (ObjectAnimator) handler.mDelayedAnims.get(i);
if (anim.mAutoCancel && hasSameTargetAndProperties(anim)) {
anim.cancel();
}
}
}
}
if (DBG) {
Log.d(LOG_TAG, "Anim target, duration: " + getTarget() + ", " + getDuration());
for (int i = 0; i < mValues.length; ++i) {
PropertyValuesHolder pvh = mValues[i];
Log.d(LOG_TAG, " Values[" + i + "]: " +
pvh.getPropertyName() + ", " + pvh.mKeyframes.getValue(0) + ", " +
pvh.mKeyframes.getValue(1));
}
}
super.start();
}

首先会判断,当前动画、等待动画、延迟动画中有和当前动画相同的动画,然后把相同的动画取消掉,然后会调用 super.start(),也就是 ValueAnimator 的 start 方法。

private void start(boolean playBackwards) {
if (Looper.myLooper() == null) {
throw new AndroidRuntimeException("Animators may only be run on Looper threads");
}
mReversing = playBackwards;
mPlayingBackwards = playBackwards;
if (playBackwards && mSeekFraction != -1) {
if (mSeekFraction == 0 && mCurrentIteration == 0) {
// special case: reversing from seek-to-0 should act as if not seeked at all
mSeekFraction = 0;
} else if (mRepeatCount == INFINITE) {
mSeekFraction = 1 - (mSeekFraction % 1);
} else {
mSeekFraction = 1 + mRepeatCount - (mCurrentIteration + mSeekFraction);
}
mCurrentIteration = (int) mSeekFraction;
mSeekFraction = mSeekFraction % 1;
}
if (mCurrentIteration > 0 && mRepeatMode == REVERSE &&
(mCurrentIteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
// if we were seeked to some other iteration in a reversing animator,
// figure out the correct direction to start playing based on the iteration
if (playBackwards) {
mPlayingBackwards = (mCurrentIteration % 2) == 0;
} else {
mPlayingBackwards = (mCurrentIteration % 2) != 0;
}
}
int prevPlayingState = mPlayingState;
mPlayingState = STOPPED;
mStarted = true;
mStartedDelay = false;
mPaused = false;
updateScaledDuration(); // in case the scale factor has changed since creation time
AnimationHandler animationHandler = getOrCreateAnimationHandler();
animationHandler.mPendingAnimations.add(this);
if (mStartDelay == 0) {
// This sets the initial value of the animation, prior to actually starting it running
if (prevPlayingState != SEEKED) {
setCurrentPlayTime(0);
}
mPlayingState = STOPPED;
mRunning = true;
notifyStartListeners();
}
animationHandler.start();
}
animationHandler.start() 被调用之后会调用 scheduleAnimation() 方法
private void scheduleAnimation() {
if (!mAnimationScheduled) {
mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, mAnimate, null);
mAnimationScheduled = true;
}
}
final Runnable mAnimate = new Runnable() {
@Override
public void run() {
mAnimationScheduled = false;
doAnimationFrame(mChoreographer.getFrameTime());
}
};

由上面代码我们可以知道,通过 Choreographer 发送一个异步消息,同时在 Choreographer 中处理消息,执行到 mAnimate 的 run() 方法,然后调用 AnimationHandler 内的 doAnimationFrame() 方法

void doAnimationFrame(long frameTime) {
mLastFrameTime = frameTime;
// mPendingAnimations holds any animations that have requested to be started
// We're going to clear mPendingAnimations, but starting animation may
// cause more to be added to the pending list (for example, if one animation
// starting triggers another starting). So we loop until mPendingAnimations
// is empty.
while (mPendingAnimations.size() > 0) {
ArrayList pendingCopy =
(ArrayList) mPendingAnimations.clone();
mPendingAnimations.clear();
int count = pendingCopy.size();
for (int i = 0; i < count; ++i) {
ValueAnimator anim = pendingCopy.get(i);
// If the animation has a startDelay, place it on the delayed list
if (anim.mStartDelay == 0) {
anim.startAnimation(this);
} else {
mDelayedAnims.add(anim);
}
}
}
// Next, process animations currently sitting on the delayed queue, adding
// them to the active animations if they are ready
int numDelayedAnims = mDelayedAnims.size();
for (int i = 0; i < numDelayedAnims; ++i) {
ValueAnimator anim = mDelayedAnims.get(i);
if (anim.delayedAnimationFrame(frameTime)) {
mReadyAnims.add(anim);
}
}
int numReadyAnims = mReadyAnims.size();
if (numReadyAnims > 0) {
for (int i = 0; i < numReadyAnims; ++i) {
ValueAnimator anim = mReadyAnims.get(i);
anim.startAnimation(this);
anim.mRunning = true;
mDelayedAnims.remove(anim);
}
mReadyAnims.clear();
}
// Now process all active animations. The return value from animationFrame()
// tells the handler whether it should now be ended
int numAnims = mAnimations.size();
for (int i = 0; i < numAnims; ++i) {
mTmpAnimations.add(mAnimations.get(i));
}
for (int i = 0; i < numAnims; ++i) {
ValueAnimator anim = mTmpAnimations.get(i);
if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
mEndingAnims.add(anim);
}
}
mTmpAnimations.clear();
if (mEndingAnims.size() > 0) {
for (int i = 0; i < mEndingAnims.size(); ++i) {
mEndingAnims.get(i).endAnimation(this);
}
mEndingAnims.clear();
}
// Schedule final commit for the frame.
mChoreographer.postCallback(Choreographer.CALLBACK_COMMIT, mCommit, null);
// If there are still active or delayed animations, schedule a future call to
// onAnimate to process the next frame of the animations.
if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
scheduleAnimation();
}
}

在 AnimationHandler 内的 doAnimationFrame() 方法中会调用,ValueAnimator 的 doAnimationFrame() 方法进行动画每一帧的绘制,同时通过 mChoreographer 进行每一帧的提交,然后再次调用 scheduleAnimation() 方法绘制下一帧。