-- collection是对内置数据类型的一种扩充,其主要扩充类型包括:

  1.namedtuple(): 生成可以使用名字来访问元素内容的tuple子类,以增强可读性。



def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.
     返回一个新的命名域元组子类,typename为类型名,field_names为数据变量域名

    >>> Point = namedtuple('Point', ['x', 'y']) #定义一个命名元组,类型为Point,数据变量域为['x','y']
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # 定义一个Point,x=11,y=22,(instantiate with positional args or keywords)
    >>> p[0] + p[1]                     # 也可以用下标,p[0]即x,p[1]即y,(indexable like a plain tuple)
    33
    >>> x, y = p                        # 也可以这样赋值,p即p[0]和p[1]或p.x和p.y,(unpack like a regular tuple)
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessable by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)



 

 

  2.deque: 双端队列,可以快速的从另外一侧追加和推出对象。deque其实是 double-ended queue 的缩写,翻译过来就是双端队列,它最大的好处就是实现了从队列 头部快速增加和取出对象: .popleft(), .appendleft() 。



从_collection模块得到:

class deque(object):
    """
    deque([iterable[, maxlen]]) --> deque object
    
    A list-like sequence optimized for data accesses near its endpoints.
    """
    def append(self, *args, **kwargs): # real signature unknown
        """ Add an element to the right side of the deque.从队列右边增加一个元素 
    如:



      d = deque()



      d.append( '1' )



      d.append( '2' )



      d.append( '3' )



      len (d)



      d[ 0 ]



      d[ - 1 ]



print(d)
     print("d[0]=%s,d[1]=%s,d[2]=%s"%(d[0],d[1],d[2]))
    结果
    deque(['1', '2', '3'])
    d[0]=1,d[1]=2,d[2]=3

    """



pass

    def appendleft(self, *args, **kwargs): # real signature unknown
        """ Add an element to the left side of the deque. 从队列左边增加一个元素"""
        pass

    def clear(self, *args, **kwargs): # real signature unknown
        """ Remove all elements from the deque. 清除所有队列数据"""
        pass

    def copy(self, *args, **kwargs): # real signature unknown
        """ Return a shallow copy of a deque. 返回一个浅拷贝队列"""
        pass

    def count(self, value): # real signature unknown; restored from __doc__
        """ D.count(value) -> integer -- return number of occurrences of value """
        return 0

    def extend(self, *args, **kwargs): # real signature unknown
        """ Extend the right side of the deque with elements from the iterable 从右边扩充队列值"""
        pass

    def extendleft(self, *args, **kwargs): # real signature unknown
        """ Extend the left side of the deque with elements from the iterable """
        pass

    def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__
        """
        D.index(value, [start, [stop]]) -> integer -- return first index of value.返回值得第一个下标
        Raises ValueError if the value is not present.
        """
        return 0

    def insert(self, index, p_object): # real signature unknown; restored from __doc__
        """ D.insert(index, object) -- insert object before index """
        pass

    def pop(self, *args, **kwargs): # real signature unknown
        """ Remove and return the rightmost element. """
        pass

    def popleft(self, *args, **kwargs): # real signature unknown
        """ Remove and return the leftmost element. """
        pass

    def remove(self, value): # real signature unknown; restored from __doc__
        """ D.remove(value) -- remove first occurrence of value. """
        pass

    def reverse(self): # real signature unknown; restored from __doc__
        """ D.reverse() -- reverse *IN PLACE* """
        pass

    def rotate(self, *args, **kwargs): # real signature unknown
        """ Rotate the deque n steps to the right (default n=1).  If n is negative, rotates left. """
        pass



 

  3.Counter: 计数器,主要用来计数,是对字典的一种扩充。

  下面是Counter类,从dict继承而来。



class Counter(dict):
    '''Dict subclass for counting hashable items.  Sometimes called a bag
    or multiset.  Elements are stored as dictionary keys and their counts
    are stored as dictionary values.

    >>> c = Counter('abcdeabcdabcaba')  # 从字串中计算元素个数
  Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
    >>> c.most_common(3)                # 选出3个元素最多的值
    [('a', 5), ('b', 4), ('c', 3)]
    >>> sorted(c)                       # 对每个独立的元素进行列表排序
    ['a', 'b', 'c', 'd', 'e']
    >>> ''.join(sorted(c.elements()))   # 按排序列出重复元素
    'aaaaabbbbcccdde'
    >>> sum(c.values())                 # 求出字串元素的总个数
    15

    >>> c['a']                          # 计算c字串中a元素的个数
    5
     
        #遍历'shazam'字串,为每个遍历到的元素数量加1,所以总的a元素数量为7
   >>> for elem in 'shazam':           # update counts from an iterable
    ...     c[elem] += 1                # by adding 1 to each element's count
    >>> c['a']                          # now there are seven 'a'
    7
       
   >>> del c['b']                      # 删除所有的b元素
    >>> c['b']                          # now there are zero 'b'
    0

    >>> d = Counter('simsalabim')       # 生成一个新的计数器
    >>> c.update(d)                     # 将新的计数器d加到原来的计数器c中
    >>> c['a']                          # 此时计算的a元素为9个
    9

    >>> c.clear()                       # 清空计数器
    >>> c
    Counter()

    Note:  If a count is set to zero or reduced to zero, it will remain
    in the counter until the entry is deleted or the counter is cleared:

    >>> c = Counter('aaabbc')
    >>> c['b'] -= 2                     # 将b元素减少2个
    >>> c.most_common()                 # 此时b仍然存在,但计数数量为0
    [('a', 3), ('c', 1), ('b', 0)]

    '''



 


  4.OrderedDict: 有序字典 



class OrderedDict(dict):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as regular dictionaries.

    # The internal self.__map dict maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # The sentinel is in self.__hardroot with a weakref proxy in self.__root.
    # The prev links are weakref proxies (to prevent circular references).
    # Individual links are kept alive by the hard reference in self.__map.
    # Those hard references disappear when a key is deleted from an OrderedDict.
def clear(self):
        'od.clear() -> None.  Remove all items from od.'
        root = self.__root
        root.prev = root.next = root
        self.__map.clear()
        dict.clear(self)

    def popitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.

        '''
        if not self:
            raise KeyError('dictionary is empty')
        root = self.__root
        if last:
            link = root.prev
            link_prev = link.prev
            link_prev.next = root
            root.prev = link_prev
        else:
            link = root.next
            link_next = link.next
            root.next = link_next
            link_next.prev = root
        key = link.key
        del self.__map[key]
        value = dict.pop(self, key)
        return key, value

    def move_to_end(self, key, last=True):
        '''Move an existing element to the end (or beginning if last==False).

        Raises KeyError if the element does not exist.
        When last=True, acts like a fast version of self[key]=self.pop(key).

        '''
        link = self.__map[key]
        link_prev = link.prev
        link_next = link.next
        link_prev.next = link_next
        link_next.prev = link_prev
        root = self.__root
        if last:
            last = root.prev
            link.prev = last
            link.next = root
            last.next = root.prev = link
        else:
            first = root.next
            link.prev = root
            link.next = first
            root.next = first.prev = link

    def __sizeof__(self):
        sizeof = _sys.getsizeof
        n = len(self) + 1                       # number of links including root
        size = sizeof(self.__dict__)            # instance dictionary
        size += sizeof(self.__map) * 2          # internal dict and inherited dict
        size += sizeof(self.__hardroot) * n     # link objects
        size += sizeof(self.__root) * n         # proxy objects
        return size

    update = __update = MutableMapping.update

    def keys(self):
        "D.keys() -> a set-like object providing a view on D's keys"
        return _OrderedDictKeysView(self)

    def items(self):
        "D.items() -> a set-like object providing a view on D's items"
        return _OrderedDictItemsView(self)

    def values(self):
        "D.values() -> an object providing a view on D's values"
        return _OrderedDictValuesView(self)

    __ne__ = MutableMapping.__ne__

    __marker = object()

    def pop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.

        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default

    def setdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default

    @_recursive_repr()
    def __repr__(self):
        'od.__repr__() <==> repr(od)'
        if not self:
            return '%s()' % (self.__class__.__name__,)
        return '%s(%r)' % (self.__class__.__name__, list(self.items()))

    def __reduce__(self):
        'Return state information for pickling'
        inst_dict = vars(self).copy()
        for k in vars(OrderedDict()):
            inst_dict.pop(k, None)
        return self.__class__, (), inst_dict or None, None, iter(self.items())

    def copy(self):
        'od.copy() -> a shallow copy of od'
        return self.__class__(self)

    @classmethod
    def fromkeys(cls, iterable, value=None):
        '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
        If not specified, the value defaults to None.

        '''
        self = cls()
        for key in iterable:
            self[key] = value
        return self

    def __eq__(self, other):
        '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
        while comparison to a regular mapping is order-insensitive.

        '''
        if isinstance(other, OrderedDict):
            return dict.__eq__(self, other) and all(map(_eq, self, other))
        return dict.__eq__(self, other)


try:
    from _collections import OrderedDict
except ImportError:
    # Leave the pure Python version in place.
    pass



 

   

5.defaultdict: 带有默认值的字典

 我们都知道,在使用Python原生的数据结构dict的时候,如果用 d[key] 这样的方式访问, 当指定的key不存在时,是会抛出KeyError异常的。

但是,如果使用defaultdict,只要你传入一个默认的工厂方法,那么请求一个不存在的key时, 便会调用这个工厂方法使用其结果来作为这个key的默认值。

默认值可以很方便

众所周知,在Python中如果访问字典中不存在的键,会引发KeyError异常(JavaScript中如果对象中不存在某个属性,则返回undefined)。但是有时候,字典中的每个键都存在默认值是非常方便的。例如下面的例子:

strings = ('puppy', 'kitten', 'puppy', 'puppy', 'weasel', 'puppy', 'kitten', 'puppy') counts = {} for kw in strings: counts[kw] += 1

该例子统计strings中某个单词出现的次数,并在counts字典中作记录。单词每出现一次,在counts相对应的键所存的值数字加1。但是事实上,运行这段代码会抛出KeyError异常,出现的时机是每个单词第一次统计的时候,因为Python的dict中不存在默认值的说法,可以在Python命令行中验证:

>>> counts = dict() >>> counts {} >>> counts['puppy'] += 1 Traceback (most recent call last): File "<stdin>", line 1, in <module> KeyError: 'puppy'

 

使用判断语句检查

既然如此,首先可能想到的方法是在单词第一次统计的时候,在counts中相应的键存下默认值1。这需要在处理的时候添加一个判断语句:

strings = ('puppy', 'kitten', 'puppy', 'puppy', 'weasel', 'puppy', 'kitten', 'puppy') counts = {} for kw in strings: if kw not in counts: counts[kw] = 1 else: counts[kw] += 1 # counts: # {'puppy': 5, 'weasel': 1, 'kitten': 2}

使用dict.setdefault()方法

也可以通过dict.setdefault()方法来设置默认值:

strings = ('puppy', 'kitten', 'puppy', 'puppy', 'weasel', 'puppy', 'kitten', 'puppy') counts = {} for kw in strings: counts.setdefault(kw, 0) counts[kw] += 1 # 原PPT中这里有一个笔误

dict.setdefault()方法接收两个参数,第一个参数是健的名称,第二个参数是默认值。假如字典中不存在给定的键,则返回参数中提供的默认值;反之,则返回字典中保存的值。利用dict.setdefault()方法的返回值可以重写for循环中的代码,使其更加简洁:

strings = ('puppy', 'kitten', 'puppy', 'puppy', 'weasel', 'puppy', 'kitten', 'puppy') counts = {} for kw in strings: counts[kw] = counts.setdefault(kw, 0) + 1

使用collections.defaultdict

以上的方法虽然在一定程度上解决了dict中不存在默认值的问题,但是这时候我们会想,有没有一种字典它本身提供了默认值的功能呢?答案是肯定的,那就是collections.defaultdict

defaultdict类就好像是一个dict,但是它是使用一个类型来初始化的:

>>> from collections import defaultdict >>> dd = defaultdict(list) >>> dd defaultdict(<type 'list'>, {})

defaultdict类的初始化函数接受一个类型作为参数,当所访问的键不存在的时候,可以实例化一个值作为默认值:

>>> dd['foo'] [] >>> dd defaultdict(<type 'list'>, {'foo': []}) >>> dd['bar'].append('quux') >>> dd defaultdict(<type 'list'>, {'foo': [], 'bar': ['quux']})

需要注意的是,这种形式的默认值只有在通过dict[key]或者dict.__getitem__(key)访问的时候才有效,这其中的原因在下文会介绍。

>>> from collections import defaultdict >>> dd = defaultdict(list) >>> 'something' in dd False >>> dd.pop('something') Traceback (most recent call last): File "<stdin>", line 1, in <module> KeyError: 'pop(): dictionary is empty' >>> dd.get('something') >>> dd['something'] []

defaultdict类除了接受类型名称作为初始化函数的参数之外,还可以使用任何不带参数的可调用函数,到时该函数的返回结果作为默认值,这样使得默认值的取值更加灵活。下面用一个例子来说明,如何用自定义的不带参数的函数zero()作为defaultdict类的初始化函数的参数:

>>> from collections import defaultdict >>> def zero(): ... return 0 ... >>> dd = defaultdict(zero) >>> dd defaultdict(<function zero at 0xb7ed2684>, {}) >>> dd['foo'] 0 >>> dd defaultdict(<function zero at 0xb7ed2684>, {'foo': 0})

利用collections.defaultdict来解决最初的单词统计问题,代码如下:

from collections import defaultdict

strings = ('puppy', 'kitten', 'puppy', 'puppy', 'weasel', 'puppy', 'kitten', 'puppy') counts = defaultdict(lambda: 0) # 使用lambda来定义简单的函数 for s in strings: counts[s] += 1

defaultdict类是如何实现的

通过上面的内容,想必大家已经了解了defaultdict类的用法,那么在defaultdict类中又是如何来实现默认值的功能呢?这其中的关键是使用了看__missing__()这个方法:

>>> from collections import defaultdict >>> print defaultdict.__missing__.__doc__ __missing__(key) # Called by __getitem__ for missing key; pseudo-code: if self.default_factory is None: raise KeyError(key) self[key] = value = self.default_factory() return value

通过查看__missing__()方法的docstring,可以看出当使用__getitem__()方法访问一个不存在的键时(dict[key]这种形式实际上是__getitem__()方法的简化形式),会调用__missing__()方法获取默认值,并将该键添加到字典中去。

关于__missing__()方法的具体介绍可以参考Python官方文档中的"Mapping Types — dict"一节。

文档中介绍,从2.5版本开始,如果派生自dict的子类定义了__missing__()方法,当访问不存在的键时,dict[key]会调用__missing__()方法取得默认值。

从中可以看出,虽然dict支持__missing__()方法,但是在dict本身是不存在这个方法的,而是需要在派生的子类中自行实现这个方法。可以简单的验证这一点:

>>> print dict.__missing__.__doc__ Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: type object 'dict' has no attribute '__missing__'

同时,我们可以进一步的做实验,定义一个子类Missing并实现__missing__()方法:

>>> class Missing(dict): ... def __missing__(self, key): ... return 'missing' ... >>> d = Missing() >>> d {} >>> d['foo'] 'missing' >>> d {}

返回结果反映了__missing__()方法确实发挥了作用。在此基础上,我们稍许修改__missing__()方法,使得该子类同defautldict类一样为不存在的键设置一个默认值:

>>> class Defaulting(dict): ... def __missing__(self, key): ... self[key] = 'default' ... return 'default' ... >>> d = Defaulting() >>> d {} >>> d['foo'] 'default' >>> d {'foo': 'default'}

在旧版本的Python中实现类defaultdict的功能

defaultdict类是从2.5版本之后才添加的,在一些旧版本中并不支持它,因此为旧版本实现一个兼容的defaultdict类是必要的。这其实很简单,虽然性能可能未必如2.5版本中自带的defautldict类好,但在功能上是一样的。

首先,__getitem__()方法需要在访问键失败时,调用__missing__()方法:

class defaultdict(dict): def __getitem__(self, key): try: return dict.__getitem__(self, key) except KeyError: return self.__missing__(key)

其次,需要实现__missing__()方法用来设置默认值:

class defaultdict(dict): def __getitem__(self, key): try: return dict.__getitem__(self, key) except KeyError: return self.__missing__(key) def __missing__(self, key): self[key] = value = self.default_factory() return value

然后,defaultdict类的初始化函数__init__()需要接受类型或者可调用函数参数:

class defaultdict(dict): def __init__(self, default_factory=None, *a, **kw): dict.__init__(self, *a, **kw) self.default_factory = default_factory def __getitem__(self, key): try: return dict.__getitem__(self, key) except KeyError: return self.__missing__(key) def __missing__(self, key): self[key] = value = self.default_factory() return value

最后,综合以上内容,通过以下方式完成兼容新旧Python版本的代码:

try:
    from collections import defaultdict except ImportError: class defaultdict(dict): def __init__(self, default_factory=None, *a, **kw): dict.__init__(self, *a, **kw) self.default_factory = default_factory def __getitem__(self, key): try: return dict.__getitem__(self, key) except KeyError: return self.__missing__(key) def __missing__(self, key): self[key] = value = self.default_factory() return value



class defaultdict(dict):
    """
    defaultdict(default_factory[, ...]) --> dict with default factory
    
    The default factory is called without arguments to produce
    a new value when a key is not present, in __getitem__ only.
    A defaultdict compares equal to a dict with the same items.
    All remaining arguments are treated the same as if they were
    passed to the dict constructor, including keyword arguments.
    """
    def copy(self): # real signature unknown; restored from __doc__
        """ D.copy() -> a shallow copy of D. """
        pass

    def __copy__(self, *args, **kwargs): # real signature unknown
        """ D.copy() -> a shallow copy of D. """
        pass

    def __getattribute__(self, *args, **kwargs): # real signature unknown
        """ Return getattr(self, name). """
        pass

    def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__
        """
        defaultdict(default_factory[, ...]) --> dict with default factory
        
        The default factory is called without arguments to produce
        a new value when a key is not present, in __getitem__ only.
        A defaultdict compares equal to a dict with the same items.
        All remaining arguments are treated the same as if they were
        passed to the dict constructor, including keyword arguments.
        
        # (copied from class doc)
        """
        pass

    def __missing__(self, key): # real signature unknown; restored from __doc__
        """
        __missing__(key) # Called by __getitem__ for missing key; pseudo-code:
          if self.default_factory is None: raise KeyError((key,))
          self[key] = value = self.default_factory()
          return value
        """
        pass

    def __reduce__(self, *args, **kwargs): # real signature unknown
        """ Return state information for pickling. """
        pass

    def __repr__(self, *args, **kwargs): # real signature unknown
        """ Return repr(self). """
        pass

    default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
    """Factory for default value called by __missing__()."""