• 背景介绍
    Neural Network之模型复杂度主要取决于优化参数个数与参数变化范围. 优化参数个数可手动调节, 参数变化范围可通过正则化技术加以限制. 本文从优化参数个数出发, 以Residual Block技术为例, 简要演示Residual Block残差块对Neural Network模型复杂度的影响.
  • 算法特征
    ①. 对输入进行等维度变换; ②. 以加法连接前后变换扩大函数空间
  • 算法推导
    典型残差块结构如下,

即, 输入\(x\)之函数空间通过加法\(x + f(x)\)扩大. 可以看到, 在前向计算过程中, 函数\(f(x)\)之作用类似于残差, 补充输入\(x\)对标准输出描述之不足; 同时, 在反向传播过程中, 对输入\(x\)之梯度计算分裂在不同影响链路上, 降低了函数\(f(x)\)对梯度的直接影响.

  • 数据、模型与损失函数
    数据生成策略如下,
    \[\left\{ \begin{align*} x &= r + 2g + 3b \\ y &= r^2 + 2g^2 + 3b^2 \\ lv &= -3r - 4g - 5b \end{align*} \right. \]
    Neural Network网络模型如下,

其中, 输入层\(x:=(r, g, b)\), 输出层\(y:=(x, y, lv)\), 中间所有隐藏层与输入之dimension保持一致.
损失函数如下,

\[L = \sum_{i}\frac{1}{2}(\bar{x}^{(i)} - x^{(i)})^2 + \frac{1}{2}(\bar{y}^{(i)} - y^{(i)})^2 + \frac{1}{2}(\bar{lv}^{(i)} - lv^{(i)})^2 \]

其中, \(i\)为data序号, \((\bar{x}, \bar{y}, \bar{lv})\)为相应观测值.

  • 代码实现
    本文以是否采用Residual Block为例(即在上述模型中是否去除\(\oplus\)), 观察Residual Block对模型复杂度的影响. code
import numpy
import torch
from torch import nn
from torch import optim
from torch.utils import data
from matplotlib import pyplot as plt

numpy.random.seed(0)


# 获取数据与封装数据
def xFunc(r, g, b):
	x = r + 2 * g + 3 * b
	return x


def yFunc(r, g, b):
	y = r ** 2 + 2 * g ** 2 + 3 * b ** 2
	return y


def lvFunc(r, g, b):
	lv = -3 * r - 4 * g - 5 * b
	return lv


class GeneDataset(data.Dataset):

	def __init__(self, rRange=[-1, 1], gRange=[-1, 1], bRange=[-1, 1], \
		num=100, transform=None, target_transform=None):
		self.__rRange = rRange
		self.__gRange = gRange
		self.__bRange = bRange
		self.__num = num
		self.__transform = transform
		self.__target_transform = target_transform

		self.__X = self.__build_X()
		self.__Y_ = self.__build_Y_()


	def __build_Y_(self):
		rArr = self.__X[:, 0:1]
		gArr = self.__X[:, 1:2]
		bArr = self.__X[:, 2:3]
		xArr = xFunc(rArr, gArr, bArr)
		yArr = yFunc(rArr, gArr, bArr)
		lvArr = lvFunc(rArr, gArr, bArr)
		Y_ = numpy.hstack((xArr, yArr, lvArr))
		return Y_


	def __build_X(self):
		rArr = numpy.random.uniform(*self.__rRange, (self.__num, 1))
		gArr = numpy.random.uniform(*self.__gRange, (self.__num, 1))
		bArr = numpy.random.uniform(*self.__bRange, (self.__num, 1))
		X = numpy.hstack((rArr, gArr, bArr))
		return X


	def __len__(self):
		return self.__num


	def __getitem__(self, idx):
		x = self.__X[idx]
		y_ = self.__Y_[idx]
		if self.__transform:
			x = self.__transform(x)
		if self.__target_transform:
			y_ = self.__target_transform(y_)
		return x, y_


# 构建模型
class Model(nn.Module):

	def __init__(self, is_residual_block=True):
		super(Model, self).__init__()
		torch.random.manual_seed(0)

		self.__is_residual_block = is_residual_block
		self.__in_features = 3
		self.__out_features = 3

		self.lin11 = nn.Linear(3, 3, dtype=torch.float64)
		self.lin12 = nn.Linear(3, 3, dtype=torch.float64)
		self.lin21 = nn.Linear(3, 3, dtype=torch.float64)
		self.lin22 = nn.Linear(3, 3, dtype=torch.float64)
		self.lin31 = nn.Linear(3, 3, dtype=torch.float64)
		self.lin32 = nn.Linear(3, 3, dtype=torch.float64)


	def forward(self, X):
		X1 = self.lin12(torch.tanh(self.lin11(X)))
		if self.__is_residual_block:
			X1 += X
		X1 = torch.tanh(X1)

		X2 = self.lin22(torch.tanh(self.lin21(X1)))
		if self.__is_residual_block:
			X2 += X1
		X2 = torch.tanh(X2)

		X3 = self.lin32(torch.tanh(self.lin31(X2)))
		if self.__is_residual_block:
			X3 += X2
		return X3


# 构建损失函数
class MSE(nn.Module):

	def forward(self, Y, Y_):
		loss = torch.sum((Y - Y_) ** 2)
		return loss


# 训练单元与测试单元
def train_epoch(trainLoader, model, loss_fn, optimizer):
	model.train(True)

	loss = 0
	with torch.enable_grad():
		for X, Y_ in trainLoader:
			optimizer.zero_grad()

			Y = model(X)
			lossVal = loss_fn(Y, Y_)
			lossVal.backward()
			optimizer.step()

			loss += lossVal.item()

	loss /= len(trainLoader.dataset)
	return loss


def test_epoch(testLoader, model, loss_fn, optimzier):
	model.train(False)

	loss = 0
	with torch.no_grad():
		for X, Y_ in testLoader:
			Y = model(X)
			lossVal = loss_fn(Y, Y_)
			loss += lossVal.item()
	loss /= len(testLoader.dataset)
	return loss


def train_model(trainLoader, testLoader, epochs=100):
	model_RB = Model(True)
	loss_RB = MSE()
	optimizer_RB = optim.Adam(model_RB.parameters(), 0.001)

	model_No = Model(False)
	loss_No = MSE()
	optimizer_No = optim.Adam(model_No.parameters(), 0.001)

	trainLoss_RBList = list()
	testLoss_RBList = list()
	trainLoss_NoList = list()
	testLoss_NoList = list()
	for epoch in range(epochs):
		trainLoss_RB = train_epoch(trainLoader, model_RB, loss_RB, optimizer_RB)
		testLoss_RB = test_epoch(testLoader, model_RB, loss_RB, optimizer_RB)
		trainLoss_No = train_epoch(trainLoader, model_No, loss_No, optimizer_No)
		testLoss_No = test_epoch(testLoader, model_No, loss_No, optimizer_No)

		trainLoss_RBList.append(trainLoss_RB)
		testLoss_RBList.append(testLoss_RB)
		trainLoss_NoList.append(trainLoss_No)
		testLoss_NoList.append(testLoss_No)
		if epoch % 50 == 0:
			print(epoch, trainLoss_RB, trainLoss_No, testLoss_RB, testLoss_No)

	fig = plt.figure(figsize=(5, 4))
	ax1 = fig.add_subplot(1, 1, 1)
	X = numpy.arange(1, epochs+1)
	ax1.plot(X, trainLoss_RBList, "r-", lw=1, label="train with RB")
	ax1.plot(X, testLoss_RBList, "r--", lw=1, label="test with RB")
	ax1.plot(X, trainLoss_NoList, "b-", lw=1, label="train without RB")
	ax1.plot(X, testLoss_NoList, "b--", lw=1, label="test without RB")
	ax1.set(xlabel="epoch", ylabel="loss", yscale="log")
	ax1.legend()
	fig.tight_layout()
	fig.savefig("loss.png", dpi=300)
	plt.show()


if __name__ == "__main__":
	trainData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=1000, \
		transform=torch.tensor, target_transform=torch.tensor)
	testData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=300, \
		transform=torch.tensor, target_transform=torch.tensor)
	trainLoader = data.DataLoader(trainData, batch_size=len(trainData), shuffle=False)
	testLoader = data.DataLoader(testData, batch_size=len(testData), shuffle=False)
	epochs = 10000
	train_model(trainLoader, testLoader, epochs)
  • 结果展示

可以看到, 由于Residual Block结构引入额外的优化参数, 模型复杂度得以提升. 同时, 相较于常规Neural Network(对应去除Residual Block之\(\oplus\)), Residual Block之Neural Network在优化参数个数相同的前提下更加稳妥地扩大了函数空间.

  • 使用建议
    ①. 残差函数之设计应当具备与目标输出匹配之能力;
    ②. 残差函数之设计可改变dimension, 此时\(\oplus\)侧之输入应当进行线性等维调整;
    ③. 若训练数据之复杂度高于测试数据, 则在训练起始, 训练数据之loss可能也要高于测试数据.
  • 参考文档
    ①. 动手学深度学习 - 李牧