一.opencv 裁剪说明

效果展示,要裁剪的图片

opencv 抠图裁切 java opencv 抠图裁切_裁剪图片


裁剪出的单词图像(如下)

opencv 抠图裁切 java opencv 抠图裁切_裁剪图片_02


opencv 抠图裁切 java opencv 抠图裁切_裁剪图片_03


opencv 抠图裁切 java opencv 抠图裁切_裁剪图片_04


opencv 抠图裁切 java opencv 抠图裁切_opencv 抠图裁切 java_05


opencv 抠图裁切 java opencv 抠图裁切_opencv_06


opencv 抠图裁切 java opencv 抠图裁切_opencv_07


opencv 抠图裁切 java opencv 抠图裁切_opencv_06

这里程序我是用在paddleOCR里面,通过识别模型将识别出的图根据程序提供的坐标(即四个顶点的值)进行抠图的程序(上面的our和and就是扣的图),并进行了封装,相同格式的在这个基础上改就是了

[[[368.0, 380.0], [437.0, 380.0], [437.0, 395.0], [368.0, 395.0]], [[496.0, 376.0], [539.0, 378.0], [538.0, 397.0], [495.0, 395.0]], [[466.0, 379.0], [498.0, 379.0], [498.0, 395.0], [466.0, 395.0]], [[438.0, 379
.0], [466.0, 379.0], [466.0, 395.0], [438.0, 395.0]], ]

从程序得到的数据格式大概长上面的样子,由多个四个坐标一组的数据(如下)组成,即下面的[368.0, 380.0]为要裁剪图片左上角坐标,[437.0, 380.0]为要裁剪图片右上角坐标,[437.0, 395.0]为要裁剪图片右下角坐标,[368.0, 395.0]为要裁剪图片左下角坐标.

[[368.0, 380.0], [437.0, 380.0], [437.0, 395.0], [368.0, 395.0]]

而这里剪裁图片使用的是opencv(由于参数的原因没有设置角度的话就只能裁剪出平行的矩形,如果需要裁减出不与矩形图片编译平行的图片的话

裁剪部分主要是根据下面这一行代码进行的,这里要记住(我被这里坑了一下午),
参数 tr[1]:左上角或右上角的纵坐标值
参数bl[1]:左下角或右下角的纵坐标值
参数tl[0]:左上角或左下角的横坐标值
参数br[0]:右上角或右下角的横坐标值

crop = img[int(tr[1]):int(bl[1]), int(tl[0]):int(br[0]) ]
#例如下面这样命名:
 crop = img[int(left_up_y):int(left_down_y), int(left_up_x):int(right_up_x)]

opencv 抠图裁切 java opencv 抠图裁切_裁剪图片_09

总的程序代码如下

import numpy as np
import cv2


def np_list_int(tb):
    tb_2 = tb.tolist() #将np转换为列表
    return tb_2


def shot(img, dt_boxes):#应用于predict_det.py中,通过dt_boxes中获得的四个坐标点,裁剪出图像
    dt_boxes = np_list_int(dt_boxes)
    boxes_len = len(dt_boxes)
    num = 0
    while 1:
        if (num < boxes_len):
            box = dt_boxes[num]
            tl = box[0]
            tr = box[1]
            br = box[2]
            bl = box[3]
            print("打印转换成功数据num =" + str(num))
            print("tl:" + str(tl), "tr:" + str(tr), "br:" + str(br), "bl:" + str(bl))
            print(tr[1],bl[1], tl[0],br[0])


            crop = img[int(tr[1]):int(bl[1]), int(tl[0]):int(br[0]) ]

            
            # crop = img[27:45, 67:119] #测试
            # crop = img[380:395, 368:119]

            cv2.imwrite("K:/paddleOCR/PaddleOCR/screenshot/a/" + str(num) + ".jpg", crop)

            num = num + 1
        else:
            break


def shot1(img_path,tl, tr, br, bl,i):
    tl = np_list_int(tl)
    tr = np_list_int(tr)
    br = np_list_int(br)
    bl = np_list_int(bl)

    print("打印转换成功数据")
    print("tl:"+str(tl),"tr:" + str(tr), "br:" + str(br), "bl:"+ str(bl))

    img = cv2.imread(img_path)
    crop = img[tr[1]:bl[1], tl[0]:br[0]]

    # crop = img[27:45, 67:119]

    cv2.imwrite("K:/paddleOCR/PaddleOCR/screenshot/shot/" + str(i) + ".jpg", crop)

# tl1 = np.array([67,27])
# tl2= np.array([119,27])
# tl3 = np.array([119,45])
# tl4 = np.array([67,45])
# shot("K:\paddleOCR\PaddleOCR\screenshot\zong.jpg",tl1, tl2 ,tl3 , tl4 , 0)

特别注意对np类型转换成列表,以及crop = img[tr[1]:bl[1], tl[0]:br[0]]的中参数的位置,

二. 2022.8 新增批量裁剪图片代码

import numpy as np
import cv2
import os

def np_list_int(tb):
    tb_2 = tb.tolist()  # 将np转换为列表
    return tb_2


def shot_new(img_path, left_up, left_down, right_up, i):


    print("加载图像: " + img_path)
    img = cv2.imread(img_path)
    left_up_y = left_up[1]
    left_down_y = left_down[1]
    left_down_x = left_up[0]
    right_up_x = right_up[0]
    crop = img[int(left_up_y):int(left_down_y), int(left_down_x):int(right_up_x)]

    cv2.imwrite("H1_out/" + str(i) + ".jpg", crop) # 输出


if __name__ == '__main__':
    
    
    """
    
    文件夹下批量切割例子
    H1 为你要处理的文件夹
    
    """
    for root,dirs,files in os.walk("H1"):
        print("图片列表:")
        print(files)
    
    left_up_1 = np.array([1323,1810]) # 左上角坐标
    left_down_1= np.array([1323,2190]) # 左下角坐标
    right_up_1 = np.array([1943,1810]) # 右上角坐标
    
    for num,val in enumerate(files):
        shot_new(img_path = "H1/" + val, left_up = left_up_1 , left_down = left_down_1, right_up = right_up_1, i = num)