下面的程序实现画出正态分布图形,并且画出相应的拒绝域范围。
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import scipy.stats as stats
style.use('bmh')
def draw_norm(mean, std):
x = np.linspace(mean-4*std, mean+4*std, 100)
y = norm.pdf(x, loc=mean, scale = std)
# plt.plot(x, y, linewidth = 1)
plt.plot(x, y )
plt.text(x = mean, y = 0, s="$ \mu = {} $".format(mean), size =15)
# plt.text(x = mean, y = 0, s="$ x = \mu $", size = 20)
# plt.text(x = mean+std, y = np.max(y), s = "$ \sigma $", size = 20)
plt.text(x = mean + 2*std, y = np.max(y)*0.7, s = "$ \sigma = {} $".format(np.round(std, decimals=3)), size =15)
# plt.xticks([])
# plt.yticks([])
plt.axvline(x = mean,linewidth = 1, linestyle = '--')
plt.axhline(y = 0 ,linewidth = 1, linestyle = '--')
# plt.text(x = mean+std, y = np.median(y), s = "$ ")
plt.tight_layout()
def draw_area(mean, std, low, high):
x = np.linspace(mean + low*std, mean + high*std, 100)
y = stats.norm.pdf(x, loc = mean, scale = std)
plt.fill_between(x, y, color = "red")
def draw_line(x):
plt.axvline(x=x, color = "green", linestyle = "--")
def draw_two(mean, se, alpha):
draw_norm(mean, std=se)
if alpha == 0.05:
draw_area(mean=mean, std=se, low=-4, high=-1.96 )
draw_area(mean, std = se, low=1.96, high=4)
elif alpha == 0.1:
draw_area(mean, std=se, low=-4, high=-1.65)
draw_area(mean, std = se, low=1.65, high=4)
else:
draw_area(mean, std = se, low=-4, high=-2.58)
draw_area(mean,std = se, low=2.58, high=4)
from numpy import sqrt
draw_norm(69.2, sqrt(49.3)/sqrt(50))
draw_norm(67.5, sqrt(64.5)/sqrt(80))
draw_norm(0, 1)
draw_area(0, 1, 1.65, 4)
draw_line(1.27)
效果如下图