一、决策树
决策树是机器学习最基本的模型,在不考虑其他复杂情况下,我们可以用一句话来描述决策树:如果得分大于等于60分,那么你及格了。
这是一个最最简单的决策树的模型,我们把及格和没及格分别附上标签,及格(1),没及格(0),那么得到的决策树是这样的
但是我们几乎不会让计算机做这么简单的工作,我们把情况变得复杂一点
引用别的文章的一个例子
这是一张女孩对于不同条件的男性是否会选择见面的统计表,图中是否见面作为我们需要分类的结果,因此最后我们的结果无非就只是是和否两种情况。这是一个二分类的问题,但是需要判断的条件多了很多,现在不仅仅只是一个判断就能得出结果了,但是从上图我们找到了一个结果为否的记录,因此如果一个男性在城市无房产、年收入小于 17w 且离过婚,则可以预测女孩不会跟他见面。
那么问题就来了,在这种复杂的情况下,决策树怎么构建?
先通过城市是否拥有房产这条特征,把这10个人划分为2类
这个分类结果并不是很好,因为它没有将见面与不见面完全的分开,在算法中,当然不能凭我们的“感觉”去评价分类结果的好坏。我们需要用一个数去表示。
二、Gini不纯度
Gini不纯度是对分类结果好坏的度量标准(还可以用信息熵 - ∑ pi * log pi 和增益去表示,可自行了解)
他的值是:1-每个标签占总数的比例的平方和。即
对于上述的结果来讲,总的集合D被分为两个集合D1,D2,假设见面为1,不见面为0。
那么D1的不纯度为1-f1^2-f0^2,总数为5,见面的占了全部,则f1=1,f0=0,结果为0
D2的不纯度为1-f1^2-f0^2,f1=0.8,f0=0.2,结果为0.32
ok,那么整个分类结果的Gini不纯度就是D1/D与0的乘积 加上 D2/D与0.32的乘积,为0.16
Gini值代表了某一个分类结果的“纯度”,我们希望结果的纯度很高,这样就不需要对这一结果进行处理了。
从以上分析可以看出,Gini值越小,纯度越高,结果越好。
生成算法
如果属性用完了怎么办:
如果属性全部用完,但是数据还不是纯净集怎么办,即集合内的元素不属于同一类别。就比如上述买电脑的例子中,如果age,Credit_rating,Student,Income都相等,但是有人买电脑,有人不买电脑,那决策树怎么决策?在这种情况下,由于没有更多信息可以使用了,一般对这些子集进行“多数表决”,即使用此子集中出现次数最多的类别作为此节点类别,然后将此节点作为叶子节点。
三、决策树的生成
在第一个例子中“如果得分大于等于60分,那么你及格了”中,生成决策树步骤是首先选择特征,“得分”,然后确定临界值,“>=60”
1.复杂的情况下也是一样,对于每一个特征,找到一个使得Gini值最小的分割点(这个分割点可以是>,<,>=这样的判断,也可以是=,!=),然后比较每个特征之间最小的Gini值,作为当前最优的特征的最优分割点(这实际上涉及到了两个步骤,选择最优特征以及选择最优分割点)。
2.在第一步完成后,会生成两个叶节点,我们对这两个叶节点做判断,计算它的Gini值是否足够小(若是,就将其作为叶子不再分类)
3.将上步得到的叶节点作为新的集合,进行步骤1的分类,延伸出两个新的叶子节点(当然此时该节点变成了父节点)
4.循环迭代至不再有Gini值不符合标准的叶节点
四、决策树的缺陷
我们用决策树把一个平面上的众多点分为两类,每一个点都有(x1,x2)两个特征,下面展示分类的过程
最后生成的决策树,取了四个分割点,在图上的显示如下,只要是落在中央矩形区域内默认是绿色,否则为红色
不过这种情况是分类参数选择比较合理的情况(它不介意某些绿色的点落在外围),但是当我们在训练的时候需要将所有的绿点无差错的分出来(即参数选择不是很合理的情况),决策树会产生过拟合的现象,导致泛化能力变弱。
五、随机森林
鉴于决策树容易过拟合的缺点,随机森林采用多个决策树的投票机制来改善决策树,我们假设随机森林使用了m棵决策树,那么就需要产生m个一定数量的样本集来训练每一棵树,如果用全样本去训练m棵决策树显然是不可取的,全样本训练忽视了局部样本的规律,对于模型的泛化能力是有害的
产生n个样本的方法采用Bootstraping法,这是一种有放回的抽样方法,产生n个样本
而最终结果采用Bagging的策略来获得,即多数投票机制
随机森林的生成方法:
1.从样本集中通过重采样的方式产生n个样本
2.假设样本特征数目为a,对n个样本选择a中的k个特征,用建立决策树的方式获得最佳分割点
3.重复m次,产生m棵决策树
4.多数投票机制来进行预测
(需要注意的一点是,这里m是指循环的次数,n是指样本的数目,n个样本构成训练的样本集,而m次循环中又会产生m个这样的样本集)
数据的随机选取
待选特征的随机选取:
与数据集的随机选取类似,随机森林中的子树的每一个分裂过程并未用到所有的待选特征,而是从所有的待选特征中随机选取一定的特征,之后再在随机选取的特征中选取最优的特征。这样能够使得随机森林中的决策树都能够彼此不同,提升系统的多样性,从而提升分类性能。
六、随机森林模型的总结
随机森林是一个比较优秀的模型,在我的项目的使用效果上来看,它对于多维特征的数据集分类有很高的效率,还可以做特征重要性的选择。运行效率和准确率较高,实现起来也比较简单。但是在数据噪音比较大的情况下会过拟合,过拟合的缺点对于随机森林来说还是较为致命的。