目录

Model部分的源码如下:

data部分的源码如下 

对于data部分的代码分析 

 1.Encoder部分的代码分析

 (1)在Encoder中首先进入的是Embedding层。

(2)在Encoder中第二次进入的是Positional层。

(3)在Encoder中第三次进入的是get_attn_pad_mask,

(4)最后一步进入的是layer层,也就是Encoderlayer层,最主要的计算都在这里。

 多头注意力的部分,


 代码来自b站up:数学家是我理想

pytorch代码转换成keras pytorch transformer encoder_人工智能

代码总体分为三个部分,data部分是测试用的数据,为手动输入为了方便理解代码的流程比较简单。model部分是整个模型的代码流程。 

Model部分的源码如下:

import math
import torch
import numpy as np
import torch.nn as nn






# Transformer Parameters
from transformer_data import src_vocab_size, target_vocab_size

d_model = 512  # Embedding Size
d_ff = 2048 # FeedForward dimension
d_k = d_v = 64  # dimension of K(=Q), V
n_layers = 6  # number of Encoder of Decoder Layer
n_heads = 8  # number of heads in Multi-Head Attention







class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        #pe的维度是(5000,512)
        pe = torch.zeros(max_len, d_model)

        #position是一个5000行1列的tensor
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)

        #div_term是一个256长度的一维tensor
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0).transpose(0, 1)
        #最终的pe是一个torch.Size([5000, 1, 512])的维度
        self.register_buffer('pe', pe)

    def forward(self, x):
        '''
        x: [seq_len, batch_size, d_model]
        '''
        x = x + self.pe[:x.size(0), :]
       
        return self.dropout(x)

def get_attn_pad_mask(seq_q, seq_k):
    '''
    seq_q: [batch_size, seq_len]
    seq_k: [batch_size, seq_len]
    seq_len could be src_len or it could be tgt_len
    seq_len in seq_q and seq_len in seq_k maybe not equal
    '''
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # [batch_size, 1, len_k], True is masked
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # [batch_size, len_q, len_k]






def get_attn_subsequence_mask(seq):
    '''
    seq: [batch_size, tgt_len]
    '''
    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
    subsequence_mask = np.triu(np.ones(attn_shape), k=1) # Upper triangular matrix
    subsequence_mask = torch.from_numpy(subsequence_mask).byte()
    return subsequence_mask # [batch_size, tgt_len, tgt_len]


class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):
        '''
        Q: [batch_size, n_heads, len_q, d_k]
        K: [batch_size, n_heads, len_k, d_k]
        V: [batch_size, n_heads, len_v(=len_k), d_v]
        attn_mask: [batch_size, n_heads, seq_len, seq_len]
        '''
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)  # scores : [batch_size, n_heads, len_q, len_k]

        scores.masked_fill_(attn_mask, -1e9)  # Fills elements of self tensor with value where mask is True.

        attn = nn.Softmax(dim=-1)(scores)


        context = torch.matmul(attn, V)  # [batch_size, n_heads, len_q, d_v]
        # print(attn.shape)
        # print(V.shape)
        # torch.Size([2, 8, 5, 5])
        # torch.Size([2, 8, 5, 64])
        return context, attn

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False)
        #d_k * n_heads     64 * 8
        self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
        self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
        self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)

    #input_Q  (2,5,512)    attn_mask (2,5,5)
    def forward(self, input_Q, input_K, input_V, attn_mask):
            # '''
            # input_Q: [batch_size, len_q, d_model] (2,5,512)
            # input_K: [batch_size, len_k, d_model]
            # input_V: [batch_size, len_v(=len_k), d_model]
            # attn_mask: [batch_size, seq_len, seq_len]
            # '''
        #print("input_Q的维度", input_Q.shape)
        residual, batch_size = input_Q, input_Q.size(0)
            # (B, S, D) -proj-> (B, S, D_new) -split-> (B, S, H, W) -trans-> (B, H, S, W)
            # D_new这个新的维度就是原本的维度 × n个头,也就是
        Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)
            # Q: [batch_size, n_heads, len_q, d_k]
            #(2,5,512)-> (2,5,8,64) ->
        K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1,2)
            # K: [batch_size, n_heads, len_k, d_k]

        V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1,2)
            # V: [batch_size, n_heads, len_v(=len_k), d_v]

           # torch.Size([2, 5, 5]) -》([2, 8, 5, 5]) 也就是复制了几份

        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)
        # attn_mask : [batch_size, n_heads, seq_len, seq_len]

        # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k]
        context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask)
        # (2,8,5,64)
        # (2,8,5,5)


        context = context.transpose(1, 2).reshape(batch_size, -1,n_heads * d_v)
        # context: [batch_size, len_q, n_heads * d_v]
        #2 8 5 64 -> 2 5 8 64 -> 2 5 512

        #self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)
        #8 * 64 -> 512
        output = self.fc(context)  # [batch_size, len_q, d_model]
        print("attn.shapeattn.shapeattn.shapeattn.shapeattn.shapeattn.shapeattn.shapeattn.shapeattn.shape")
        print(attn.shape)
        return nn.LayerNorm(d_model).cuda()(output + residual), attn






class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(d_model, d_ff, bias=False),
            nn.ReLU(),
            nn.Linear(d_ff, d_model, bias=False)
        )
    def forward(self, inputs):
        '''
        inputs: [batch_size, seq_len, d_model]
        '''
        residual = inputs
        output = self.fc(inputs)
        return nn.LayerNorm(d_model).cuda()(output + residual) # [batch_size, seq_len, d_model]


# enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        '''
        enc_inputs: [batch_size, src_len, d_model]
        enc_self_attn_mask: [batch_size, src_len, src_len]
        '''
        # enc_outputs: [batch_size, src_len, d_model], attn: [batch_size, n_heads, src_len, src_len]
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, src_len, d_model]
        return enc_outputs, attn

class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)
        #词向量,src_vocab_size 有多少个词库,d_model是要转换的维度。


        self.pos_emb = PositionalEncoding(d_model)
        #返回的是一个二维的矩阵

        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

    def forward(self, enc_inputs):
        '''
        enc_inputs: [batch_size, src_len]
        '''
        enc_outputs = self.src_emb(enc_inputs) # [batch_size, src_len, d_model]
        enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, src_len, d_model]
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) # [batch_size, src_len, src_len]
        enc_self_attns = []
        for layer in self.layers:
            # enc_outputs: [batch_size, src_len, d_model], enc_self_attn: [batch_size, n_heads, src_len, src_len]
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()
        self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        '''
        dec_inputs: [batch_size, tgt_len, d_model]
        enc_outputs: [batch_size, src_len, d_model]
        dec_self_attn_mask: [batch_size, tgt_len, tgt_len]
        dec_enc_attn_mask: [batch_size, tgt_len, src_len]
        '''
        # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len]
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
        # dec_outputs: [batch_size, tgt_len, d_model], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
        dec_outputs = self.pos_ffn(dec_outputs) # [batch_size, tgt_len, d_model]
        return dec_outputs, dec_self_attn, dec_enc_attn

class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(target_vocab_size, d_model)
        self.pos_emb = PositionalEncoding(d_model)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])

    def forward(self, dec_inputs, enc_inputs, enc_outputs):
        '''
        dec_inputs: [batch_size, tgt_len]
        enc_intpus: [batch_size, src_len]
        enc_outputs: [batch_size, src_len, d_model]
        '''
        dec_outputs = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model]
        dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1).cuda() # [batch_size, tgt_len, d_model]
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs).cuda() # [batch_size, tgt_len, tgt_len]
        dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).cuda() # [batch_size, tgt_len, tgt_len]
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequence_mask), 0).cuda() # [batch_size, tgt_len, tgt_len]

        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # [batc_size, tgt_len, src_len]

        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        return dec_outputs, dec_self_attns, dec_enc_attns


class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder().cuda()
        self.decoder = Decoder().cuda()
        #这里的意思是,在encoder和decoder后都变成了512维的,然后再转换成target_vocab_size的维度的
        # tgt_vocab = {'P': 0, 'i': 1, 'want': 2, 'a': 3, 'beer': 4, 'coke': 5, 'S': 6, 'E': 7, '.': 8}
        # idx2word = {i: w for i, w in enumerate(tgt_vocab)}
        # idx2word = {0: 'P', 1: 'i', 2: 'want', 3: 'a', 4: 'beer', 5: 'coke', 6: 'S', 7: 'E', 8: '.'}
        # target_vocab_size = len(tgt_vocab)
        #为什么要转换成 target_vocab_size这个维度呢,因为你有这么多单词,要判断概率最大的是哪一个。
        self.projection = nn.Linear(d_model, target_vocab_size, bias=False).cuda()

    def forward(self, enc_inputs, dec_inputs):
        '''
        enc_inputs: [batch_size, src_len]
        dec_inputs: [batch_size, tgt_len]
        '''
        # tensor to store decoder outputs
        # outputs = torch.zeros(batch_size, tgt_len, tgt_vocab_size).to(self.device)

        # enc_outputs: [batch_size, src_len, d_model], enc_self_attns: [n_layers, batch_size, n_heads, src_len, src_len]
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)
        # dec_outpus: [batch_size, tgt_len, d_model], dec_self_attns: [n_layers, batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [n_layers, batch_size, tgt_len, src_len]
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
        dec_logits = self.projection(dec_outputs)  # dec_logits: [batch_size, tgt_len, tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

data部分的源码如下 

import torch
import torch.utils.data as Data

# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# P: Symbol that will fill in blank sequence if current batch data size is short than time steps
sentences = [
    # enc_input           dec_input         dec_output
    ['ich mochte ein bier P', 'S i want a beer .', 'i want a beer . E'],
    ['ich mochte ein cola P', 'S i want a coke .', 'i want a coke . E']
]

# Padding Should be Zero
src_vocab = {'P': 0, 'ich': 1, 'mochte': 2, 'ein': 3, 'bier': 4, 'cola': 5}
src_vocab_size = len(src_vocab)

tgt_vocab = {'P': 0, 'i': 1, 'want': 2, 'a': 3, 'beer': 4, 'coke': 5, 'S': 6, 'E': 7, '.': 8}
idx2word = {i: w for i, w in enumerate(tgt_vocab)}
target_vocab_size = len(tgt_vocab)

src_len = 5  # enc_input max sequence length
tgt_len = 6  # dec_input(=dec_output) max sequence length


def make_data(sentences):
    enc_inputs, dec_inputs, dec_outputs = [], [], []
    for i in range(len(sentences)):
        enc_input = [[src_vocab[n] for n in sentences[i][0].split()]]  # [[1, 2, 3, 4, 0], [1, 2, 3, 5, 0]]
        dec_input = [[tgt_vocab[n] for n in sentences[i][1].split()]]  # [[6, 1, 2, 3, 4, 8], [6, 1, 2, 3, 5, 8]]
        dec_output = [[tgt_vocab[n] for n in sentences[i][2].split()]]  # [[1, 2, 3, 4, 8, 7], [1, 2, 3, 5, 8, 7]]

        enc_inputs.extend(enc_input)
        dec_inputs.extend(dec_input)
        dec_outputs.extend(dec_output)

    return torch.LongTensor(enc_inputs), torch.LongTensor(dec_inputs), torch.LongTensor(dec_outputs)


enc_inputs, dec_inputs, dec_outputs = make_data(sentences)


class MyDataSet(Data.Dataset):
    def __init__(self, enc_inputs, dec_inputs, dec_outputs):
        super(MyDataSet, self).__init__()
        self.enc_inputs = enc_inputs
        self.dec_inputs = dec_inputs
        self.dec_outputs = dec_outputs

    def __len__(self):
        return self.enc_inputs.shape[0]

    def __getitem__(self, idx):
        return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]


loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 2, True)

对于data部分的代码分析 

对于loader来说,需要设置的主要有三个参数,第一个参数是数据集,第二个参数是batch_size,也就是一次传入多少个数据。

loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 2, True)

对于loader中的数据,可以这样进行遍历。

for enc_inputs, dec_inputs, dec_outputs in loader:

 基本的数据的尺度如下,第一个encoder的input是(2,5),第二个decoder的input是(2,6),第三个decoder的output也是(2,6)

tensor([[1, 2, 3, 4, 0],
        [1, 2, 3, 5, 0]])
torch.Size([2, 5])
tensor([[6, 1, 2, 3, 4, 8],
        [6, 1, 2, 3, 5, 8]])
torch.Size([2, 6])
tensor([[1, 2, 3, 4, 8, 7],
        [1, 2, 3, 5, 8, 7]])
torch.Size([2, 6])

 对于模型本身来说,首先接收的输入是enc_inputs也就是最初始的数据,(2,6)的维度的input。第一个接收这个原始的inputs的是encoder。

class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder().cuda()
        self.decoder = Decoder().cuda()
        #这里的意思是,在encoder和decoder后都变成了512维的,然后再转换成target_vocab_size的维度的
        # tgt_vocab = {'P': 0, 'i': 1, 'want': 2, 'a': 3, 'beer': 4, 'coke': 5, 'S': 6, 'E': 7, '.': 8}
        # idx2word = {i: w for i, w in enumerate(tgt_vocab)}
        # idx2word = {0: 'P', 1: 'i', 2: 'want', 3: 'a', 4: 'beer', 5: 'coke', 6: 'S', 7: 'E', 8: '.'}
        # target_vocab_size = len(tgt_vocab)
        #为什么要转换成 target_vocab_size这个维度呢,因为你有这么多单词,要判断概率最大的是哪一个。
        self.projection = nn.Linear(d_model, target_vocab_size, bias=False).cuda()

    def forward(self, enc_inputs, dec_inputs):
        '''
        enc_inputs: [batch_size, src_len]
        dec_inputs: [batch_size, tgt_len]
        '''
        # tensor to store decoder outputs
        # outputs = torch.zeros(batch_size, tgt_len, tgt_vocab_size).to(self.device)

        # enc_outputs: [batch_size, src_len, d_model], enc_self_attns: [n_layers, batch_size, n_heads, src_len, src_len]
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)
        # dec_outpus: [batch_size, tgt_len, d_model], dec_self_attns: [n_layers, batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [n_layers, batch_size, tgt_len, src_len]
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
        dec_logits = self.projection(dec_outputs)  # dec_logits: [batch_size, tgt_len, tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

 1.Encoder部分的代码分析

Encoder的初始化函数包括三个部分,

1.词编码(Embedding)

2.位置编码(PositionalEncoding)

3.若干个Encoder层(EncoderLayer)

其中词编码和位置编码都是唯一的,而可以包含若干个EncoderLayer,层数是可以手动设置。

class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)
        #词向量,src_vocab_size 有多少个词库,d_model是要转换的维度。


        self.pos_emb = PositionalEncoding(d_model)
        #返回的是一个二维的矩阵

        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

    def forward(self, enc_inputs):
        '''
        enc_inputs: [batch_size, src_len]
        '''
        enc_outputs = self.src_emb(enc_inputs) # [batch_size, src_len, d_model]
        enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, src_len, d_model]
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) # [batch_size, src_len, src_len]
        enc_self_attns = []
        for layer in self.layers:
            # enc_outputs: [batch_size, src_len, d_model], enc_self_attn: [batch_size, n_heads, src_len, src_len]
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

 (1)在Encoder中首先进入的是Embedding层。

init中的词编码如下:
self.src_emb = nn.Embedding(src_vocab_size, d_model)
forward中的词编码如下:
enc_outputs = self.src_emb(enc_inputs)


1)对于nn.Embedding(),他接收两个参数, 一个参数是num_embeddings: int,也就是所编码的这个语言有多少个词库,因为这里数据是手写的,所以很短,是6. src_vocab = {'P': 0, 'ich': 1, 'mochte': 2, 'ein': 3, 'bier': 4, 'cola': 5} src_vocab_size = len(src_vocab) 另一个参数是embedding_dim: int,也就是想要编码生成的维度,在这里是512. 2)对于enc_outputs = self.src_emb(enc_inputs) # [batch_size, src_len, d_model]。输入的是enc_inputs也就是原始的最开始输入的数据,他的维度是(2,5).经过输出之后的维度是(2,5,512)也就是说经过第一层词编码后,所得到的enc_outputs是(2,5,512)的维度。


(2)在Encoder中第二次进入的是Positional层。

在init中的函数如下
self.pos_emb = PositionalEncoding(d_model)
在forward中的函数如下
enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, src_len, d_model]

进入positionalembedding层的是经过词编码的outputs也就是(2,5,512)的维度的tensor。

进入positional_embedding前的输入需要进行维度互换,在positional_embedding里面这个输入的维度是(5,2,512)而经过之后的还是(5,2,512)只不过是对于输入的x添加了位置信息。而出来之后的输入又经过了一遍transpose,所以最终的输出的维度还是(2,5,512)。位置编码的代码如下:

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        #pe的维度是(5000,512)
        pe = torch.zeros(max_len, d_model)

        #position是一个5000行1列的tensor
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)

        #div_term是一个256长度的一维tensor
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0).transpose(0, 1)
        #最终的pe是一个torch.Size([5000, 1, 512])的维度
        self.register_buffer('pe', pe)

    def forward(self, x):
        '''
        x: [seq_len, batch_size, d_model]
        '''
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)

(3)在Encoder中第三次进入的是get_attn_pad_mask,

在这里seq_q和seq_k都是刚才的输入,原始输入,他的维度是(2,5)

def get_attn_pad_mask(seq_q, seq_k):
    '''
    seq_q: [batch_size, seq_len]
    seq_k: [batch_size, seq_len]
    seq_len could be src_len or it could be tgt_len
    seq_len in seq_q and seq_len in seq_k maybe not equal
    '''
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # [batch_size, 1, len_k], True is masked
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # [batch_size, len_q, len_k]

这个函数的输出如下图所示: 

pytorch代码转换成keras pytorch transformer encoder_人工智能_02

(4)最后一步进入的是layer层,也就是Encoderlayer层,最主要的计算都在这里。

init中的layer如下
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

forward中的layer如下
enc_self_attns = []
        for layer in self.layers:
            # enc_outputs: [batch_size, src_len, d_model], enc_self_attn: [batch_size, n_heads, src_len, src_len]
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)

如图所示,刚才红框的部分就是真正的Encoder所做的事情,

pytorch代码转换成keras pytorch transformer encoder_python_03

我们发现,EncoderLayer的部分很简单,主要包括两项

(1) MultiHeadAttention(多头注意力)

(2)PoswiseFeedForwardNet(前馈神经网络)

其中多头注意力主要是进行点积的计算也就是QKV的计算,而前馈神经网络主要是信息的凝聚和维度的变换。

class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        '''
        enc_inputs: [batch_size, src_len, d_model]
        enc_self_attn_mask: [batch_size, src_len, src_len]
        '''
        # enc_outputs: [batch_size, src_len, d_model], attn: [batch_size, n_heads, src_len, src_len]
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, src_len, d_model]
        return enc_outputs, attn


layer(enc_outputs, enc_self_attn_mask),注意这里的输入enc_outputs的维度是(2,5,512),而enc_self_attn_mask的维度是(2,5,5).layer的enc_outputs对应的是EncoderLayers里面的enc_inputs,也就是说对于forward中的enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask), 他传入的三个参数enc_inputs都是上一层的enc_outputs,就是(2,5,512)的维度。enc_self_attn_mask也就是上一层的,其维度为(2,5,5)


pytorch代码转换成keras pytorch transformer encoder_目标检测_04

 多头注意力的部分,

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False)
        #d_k * n_heads     64 * 8
        self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
        self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
        self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)

    #input_Q  (2,5,512)    attn_mask (2,5,5)
    def forward(self, input_Q, input_K, input_V, attn_mask):
            # '''
            # input_Q: [batch_size, len_q, d_model] (2,5,512)
            # input_K: [batch_size, len_k, d_model]
            # input_V: [batch_size, len_v(=len_k), d_model]
            # attn_mask: [batch_size, seq_len, seq_len]
            # '''
        #print("input_Q的维度", input_Q.shape)
        residual, batch_size = input_Q, input_Q.size(0)
            # (B, S, D) -proj-> (B, S, D_new) -split-> (B, S, H, W) -trans-> (B, H, S, W)
            # D_new这个新的维度就是原本的维度 × n个头,也就是
        Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)
            # Q: [batch_size, n_heads, len_q, d_k]

        K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1,2)
            # K: [batch_size, n_heads, len_k, d_k]

        V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1,2)
            # V: [batch_size, n_heads, len_v(=len_k), d_v]



        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)
        # attn_mask : [batch_size, n_heads, seq_len, seq_len]

        # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k]
        context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask)


        context = context.transpose(1, 2).reshape(batch_size, -1,n_heads * d_v)
        # context: [batch_size, len_q, n_heads * d_v]


        output = self.fc(context)  # [batch_size, len_q, d_model]
        return nn.LayerNorm(d_model).cuda()(output + residual), attn

所谓的W_Q,K,V矩阵就是Linear层,如init中所示:这里的d_k 和 n_heads都是之前设置好的参数,d_k是64,而n_heads是8。


self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False) self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False) self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)


在forwar中,第一步就是获取残差residual 以及batch_size


residual, batch_size = input_Q, input_Q.size(0)


第二步就是获取乘出来的Q,


Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1,2), Q的维度是(2,5,8,64)经过transpose之后(2,8,5,64). W_Q(input_Q)这是第一步,第一步的input_Q的维度是(2,5,512),经过W_Q之后的维度还是 (2,5,512),虽然维度是没有变化,但是所要学习的W_Q也就是这一个Linear层的参数。 同理K和V也是如此: K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1,2) V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1,2) 总结一下维度的信息,Q,K,V都是(2,8,5,64)


第三步是将之前乘出来的attention_mask进行维度拓展,其实就是复制了n_heads的份数。


attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)进行操作之前,attn_mask的维度是(2,5,5),在进行操作后的维度就是(2,8,5,5),也就是 attn_mask : [batch_size, n_heads, seq_len, seq_len]。 总结一下维度的信息,attn_mask的维度是(2,8,5,5)


第四步是进行点击运算来得到context和attn,所需要的输入是之前利用Linear层和input_q所乘出来的Q,K,V,以及attn_mask。


context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask)         # Q,K,V都是(2,8,5,64)。attn_mask的维度是(2,8,5,5)#


具体的ScaledDotProductAttention函数如下所示:

class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):
        '''
        Q: [batch_size, n_heads, len_q, d_k]
        K: [batch_size, n_heads, len_k, d_k]
        V: [batch_size, n_heads, len_v(=len_k), d_v]
        attn_mask: [batch_size, n_heads, seq_len, seq_len]
        '''
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)  # scores : [batch_size, n_heads, len_q, len_k]

        scores.masked_fill_(attn_mask, -1e9)  # Fills elements of self tensor with value where mask is True.

        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V)  # [batch_size, n_heads, len_q, d_v]

        return context, attn


第一步,scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k),因为Q和K的维度都是(2,8,5,64)将K的维度变换后是(2,8,64,5)所以乘出来的维度是(2,8,5,5)。总结,在这里scores的维度是(2,8,5,5) 第二步,scores.masked_fill_(attn_mask, -1e9),将attn_mask的为true的部分变成负数,这样经过softmax的时候,这个部分就会变成接近于0的数,所以不会产生影响。 第三步,attn = nn.Softmax(dim=-1)(scores),会将其中的每行进行softmax也就是每一行相加是等于1的。如下图所示



第四步,context = torch.matmul(attn, V),return context, attn attn的维度是(2,8,5,5)而V的维度是(2,8,5,64)所以context的维度是(2,8,5,64). 总结一下维度,在第四步输入的attn是(2,8,5,5)而V是(2,8,5,64)所以他俩相乘的维度是(2,8,5,64),最终返回的context的维度就是(2,8,5,64).


第五步,将context的维度从(2,8,5,64)->(2,5,8,64)->(2,5,512)


context = context.transpose(1, 2).reshape(batch_size, -1,n_heads * d_v)


第六步,经过全连接层,然后return,这个全连接层的维度是不变的


output = self.fc(context) return nn.LayerNorm(d_model).cuda()(output + residual), attn 在这里,最终返回的结果的维度是(2,5,512)attn的维度是(2,8,5,5)


class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(d_model, d_ff, bias=False),
            nn.ReLU(),
            nn.Linear(d_ff, d_model, bias=False)
        )
    def forward(self, inputs):
        '''
        inputs: [batch_size, seq_len, d_model]
        '''
        residual = inputs
        output = self.fc(inputs)
        return nn.LayerNorm(d_model).cuda()(output + residual) # [batch_size, seq_len, d_model]