对以下模拟信号采用三种方式进行分解,分别是EMD,EEMD,VMD。

eemd分解出来的res是什么 emd分解图_eemd分解出来的res是什么

s4是高斯白噪声

eemd分解出来的res是什么 emd分解图_四舍五入_02

对这个s信号进行分解。下面开始代码操作:

①原始信号生成:运行该段代码,可以生成一个s.mat数据,并作图。

clear
clc
close all
t = 0:0.001:2;
s1 = cos(4*pi.*t);
figure
plot(t,s1)
%%
s2 = 1/4*cos(48*pi.*t);
figure
plot(t,s2)
%%
s3 = 1/16*cos(576*pi.*t);
figure
plot(t,s3)
%%
s4 = 3*wgn(1,length(t),10*log10(0.01));
figure
plot(t,s4)
figure
s = s1+s2+s3+s4;
plot(t,s)
save s.mat s  %保存s信号

②采用EMD对S信号进行分解并画出相应的频谱图。

clear
clc
% close all
load s.mat
%% EEMD分解
Nstd = 0.5;
NR = 500;
MaxIter = 5000;
[u its]=eemd(s,Nstd ,NR,MaxIter);
t = 0:0.001:2;
% [a b]=size(u);
a = 8;
 
figure(1);
imfn=u;
subplot(a+1,1,1); 
plot(t,s); %故障信号
ylabel('s','fontsize',12,'fontname','宋体');
for n1=1:a
    subplot(a+1,1,n1+1);
    plot(t,u(n1,:));%输出IMF分量,a(:,n)则表示矩阵a的第n列元素,u(n1,:)表示矩阵u的n1行元素
    ylabel(['IMF' int2str(n1)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
end
 xlabel('时间\itt/s','fontsize',12,'fontname','宋体');
 %%
figure('Name','频谱图','Color','white');
 
K = a;
L = length(t);
fs = 2001;
for i = 1:K
    p=abs(fft(u(i,:))); %并fft,得到p,就是包络线的fft---包络谱 
    subplot(K,1,i);
    plot((0:L-1)*fs/L,p)   %绘制包络谱
    xlim([0 fs/2]) %展示包络谱低频段,这句代码可以自己根据情况选择是否注释
     if i ==1
    title('频谱图'); ylabel(['IMF' int2str(i)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
     elseif i==K
        xlabel('频率');  ylabel(['IMF' int2str(i)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
     else
         ylabel(['IMF' int2str(i)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
     end
end
set(gcf,'color','w');

emd分解图:

eemd分解出来的res是什么 emd分解图_python_03

eemd分解出来的res是什么 emd分解图_python_04

采用EEMD对S信号进行分解并画出相应的频谱图。

clear
clc
% close all
load s.mat
%% EEMD分解
Nstd = 0.5;
NR = 500;
MaxIter = 5000;
[u its]=eemd(s,Nstd ,NR,MaxIter);
t = 0:0.001:2;
% [a b]=size(u);
a = 8;
 
figure(1);
imfn=u;
subplot(a+1,1,1); 
plot(t,s); %故障信号
ylabel('s','fontsize',12,'fontname','宋体');
for n1=1:a
    subplot(a+1,1,n1+1);
    plot(t,u(n1,:));%输出IMF分量,a(:,n)则表示矩阵a的第n列元素,u(n1,:)表示矩阵u的n1行元素
    ylabel(['IMF' int2str(n1)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
end
 xlabel('时间\itt/s','fontsize',12,'fontname','宋体');
 %%
figure('Name','频谱图','Color','white');
 
K = a;
L = length(t);
fs = 2001;
for i = 1:K
    p=abs(fft(u(i,:))); %并fft,得到p,就是包络线的fft---包络谱 
    subplot(K,1,i);
    plot((0:L-1)*fs/L,p)   %绘制包络谱
    xlim([0 fs/2]) %展示包络谱低频段,这句代码可以自己根据情况选择是否注释
     if i ==1
    title('频谱图'); ylabel(['IMF' int2str(i)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
     elseif i==K
        xlabel('频率');  ylabel(['IMF' int2str(i)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
     else
         ylabel(['IMF' int2str(i)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
     end
end
set(gcf,'color','w');

eemd分解图:

eemd分解出来的res是什么 emd分解图_开发语言_05

eemd分解出来的res是什么 emd分解图_python_06

采用VMD对S信号进行分解并画出相应的频谱图。

clear
clc
close all
load s.mat
X = s; 
t = 0:0.0005:1;
%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2000;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 8;             % modes:分解的模态数,可以自行设置,这里以8为例。
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-10;        
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
% [u,omega] = pVMD(s,fs, alpha, K, tol); 
[u, u_hat, omega] = VMD(X, alpha, tau, K, DC, init, tol); %其中u为分解得到的IMF分量
a = K;
figure(1);
imfn=u;
subplot(a+1,1,1); 
plot(t,s); %故障信号
ylabel('s','fontsize',12,'fontname','宋体');
for n1=1:a
    subplot(a+1,1,n1+1);
    plot(t,u(n1,:));%输出IMF分量,a(:,n)则表示矩阵a的第n列元素,u(n1,:)表示矩阵u的n1行元素
    ylabel(['IMF' int2str(n1)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
end
 xlabel('时间\itt/s','fontsize',12,'fontname','宋体');
 %%
figure('Name','频谱图','Color','white');
 
K = a;
L = length(t);
fs = 2001;
for i = 1:K
    p=abs(fft(u(i,:))); %并fft,得到p,就是包络线的fft---包络谱 
    subplot(K,1,i);
    plot((0:L-1)*fs/L,p)   %绘制包络谱
    xlim([0 fs/2]) %展示包络谱低频段,这句代码可以自己根据情况选择是否注释
     if i ==1
    title('频谱图'); ylabel(['IMF' int2str(i)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
     elseif i==K
        xlabel('频率');  ylabel(['IMF' int2str(i)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
     else
         ylabel(['IMF' int2str(i)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
     end
end
set(gcf,'color','w');

VMD分解图

eemd分解出来的res是什么 emd分解图_开发语言_07

eemd分解出来的res是什么 emd分解图_开发语言_08

⑤emd的函数代码(把以下代码变成函数,放在自己的文件夹下即可)

function [imf,ort,nbits] = emd(varargin)
 [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin{:});
 if display_sifting
  fig_h = figure;
end
 %main loop : requires at least 3 extrema to proceed
while (~stop_EMD(r,MODE_COMPLEX,ndirs) && (k < MAXMODES+1 || MAXMODES == 0) && ~any(mask))
   % current mode
  m = r;
   % mode at previous iteration
  mp = m;
   %computation of mean and stopping criterion
  if FIXE
    [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);
  elseif FIXE_H
    stop_count = 0;
    [stop_sift,moyenne] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);
  else
    [stop_sift,moyenne] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);
  end
 
  % in case the current mode is so small that machine precision can cause
  % spurious extrema to appear
  if (max(abs(m))) < (1e-10)*(max(abs(x)))
    if ~stop_sift
      warning('emd:warning','forced stop of EMD : too small amplitude')
    else
      disp('forced stop of EMD : too small amplitude')
    end
    break
  end
 
 
  % sifting loop
  while ~stop_sift && nbit<MAXITERATIONS
    if(~MODE_COMPLEX && nbit>MAXITERATIONS/5 && mod(nbit,floor(MAXITERATIONS/10))==0 && ~FIXE && nbit > 100)
      disp(['mode ',int2str(k),', iteration ',int2str(nbit)])
      if exist('s','var')
        disp(['stop parameter mean value : ',num2str(s)])
      end
      [im,iM] = extr(m);
      disp([int2str(sum(m(im) > 0)),' minima > 0; ',int2str(sum(m(iM) < 0)),' maxima < 0.'])
    end
 
    %sifting
    m = m - moyenne;
 
    %computation of mean and stopping criterion
    if FIXE
      [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);
    elseif FIXE_H
      [stop_sift,moyenne,stop_count] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);
    else
      [stop_sift,moyenne,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);
    end
 
    % display
    if display_sifting && ~MODE_COMPLEX
      NBSYM = 2;
      [indmin,indmax] = extr(mp);
      [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,mp,mp,NBSYM);
      envminp = interp1(tmin,mmin,t,INTERP);
      envmaxp = interp1(tmax,mmax,t,INTERP);
      envmoyp = (envminp+envmaxp)/2;
      if FIXE || FIXE_H
        display_emd_fixe(t,m,mp,r,envminp,envmaxp,envmoyp,nbit,k,display_sifting)
      else
        sxp=2*(abs(envmoyp))./(abs(envmaxp-envminp));
        sp = mean(sxp);
        display_emd(t,m,mp,r,envminp,envmaxp,envmoyp,s,sp,sxp,sdt,sd2t,nbit,k,display_sifting,stop_sift)
      end
    end
 
    mp = m;
    nbit=nbit+1;
    NbIt=NbIt+1;
 
    if(nbit==(MAXITERATIONS-1) && ~FIXE && nbit > 100)
      if exist('s','var')
        warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'. stop parameter mean value : ',num2str(s)])
      else
        warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'.'])
      end
    end
 
  end % sifting loop
  imf(k,:) = m;
  if display_sifting
    disp(['mode ',int2str(k),' stored'])
  end
  nbits(k) = nbit;
  k = k+1;
 
 
  r = r - m;
  nbit=0;
 
 
end %main loop
 
if any(r) && ~any(mask)
  imf(k,:) = r;
end
 
ort = io(x,imf);
 
if display_sifting
  close
end
end
 
%---------------------------------------------------------------------------------------------------
% tests if there are enough (3) extrema to continue the decomposition
function stop = stop_EMD(r,MODE_COMPLEX,ndirs)
if MODE_COMPLEX
  for k = 1:ndirs
    phi = (k-1)*pi/ndirs;
    [indmin,indmax] = extr(real(exp(i*phi)*r));
    ner(k) = length(indmin) + length(indmax);
  end
  stop = any(ner < 3);
else
  [indmin,indmax] = extr(r);
  ner = length(indmin) + length(indmax);
  stop = ner < 3;
end
end
 
%---------------------------------------------------------------------------------------------------
% computes the mean of the envelopes and the mode amplitude estimate
function [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs)
NBSYM = 2;
if MODE_COMPLEX
  switch MODE_COMPLEX
    case 1
      for k = 1:ndirs
        phi = (k-1)*pi/ndirs;
        y = real(exp(-i*phi)*m);
        [indmin,indmax,indzer] = extr(y);
        nem(k) = length(indmin)+length(indmax);
        nzm(k) = length(indzer);
        [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,m,NBSYM);
        envmin(k,:) = interp1(tmin,zmin,t,INTERP);
        envmax(k,:) = interp1(tmax,zmax,t,INTERP);
      end
      envmoy = mean((envmin+envmax)/2,1);
      if nargout > 3
        amp = mean(abs(envmax-envmin),1)/2;
      end
    case 2
      for k = 1:ndirs
        phi = (k-1)*pi/ndirs;
        y = real(exp(-i*phi)*m);
        [indmin,indmax,indzer] = extr(y);
        nem(k) = length(indmin)+length(indmax);
        nzm(k) = length(indzer);
        [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,y,NBSYM);
        envmin(k,:) = exp(i*phi)*interp1(tmin,zmin,t,INTERP);
        envmax(k,:) = exp(i*phi)*interp1(tmax,zmax,t,INTERP);
      end
      envmoy = mean((envmin+envmax),1);
      if nargout > 3
        amp = mean(abs(envmax-envmin),1)/2;
      end
  end
else
  [indmin,indmax,indzer] = extr(m);
  nem = length(indmin)+length(indmax);
  nzm = length(indzer);
  [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,m,m,NBSYM);
  envmin = interp1(tmin,mmin,t,INTERP);
  envmax = interp1(tmax,mmax,t,INTERP);
  envmoy = (envmin+envmax)/2;
  if nargout > 3
    amp = mean(abs(envmax-envmin),1)/2;
  end
end
end
 
%-------------------------------------------------------------------------------
% default stopping criterion
function [stop,envmoy,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs)
try
  [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
  sx = abs(envmoy)./amp;
  s = mean(sx);
  stop = ~((mean(sx > sd) > tol | any(sx > sd2)) & (all(nem > 2)));
  if ~MODE_COMPLEX
    stop = stop && ~(abs(nzm-nem)>1);
  end
catch
  stop = 1;
  envmoy = zeros(1,length(m));
  s = NaN;
end
end
 
%-------------------------------------------------------------------------------
% stopping criterion corresponding to option FIX
function [stop,moyenne]= stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs)
try
  moyenne = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
  stop = 0;
catch
  moyenne = zeros(1,length(m));
  stop = 1;
end
end
 
%-------------------------------------------------------------------------------
% stopping criterion corresponding to option FIX_H
function [stop,moyenne,stop_count]= stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs)
try
  [moyenne,nem,nzm] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
  if (all(abs(nzm-nem)>1))
    stop = 0;
    stop_count = 0;
  else
    stop_count = stop_count+1;
    stop = (stop_count == FIXE_H);
  end
catch
  moyenne = zeros(1,length(m));
  stop = 1;
end
end
 
%-------------------------------------------------------------------------------
% displays the progression of the decomposition with the default stopping criterion
function display_emd(t,m,mp,r,envmin,envmax,envmoy,s,sb,sx,sdt,sd2t,nbit,k,display_sifting,stop_sift)
subplot(4,1,1)
plot(t,mp);hold on;
plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');
title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' before sifting']);
set(gca,'XTick',[])
hold  off
subplot(4,1,2)
plot(t,sx)
hold on
plot(t,sdt,'--r')
plot(t,sd2t,':k')
title('stop parameter')
set(gca,'XTick',[])
hold off
subplot(4,1,3)
plot(t,m)
title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' after sifting']);
set(gca,'XTick',[])
subplot(4,1,4);
plot(t,r-m)
title('residue');
disp(['stop parameter mean value : ',num2str(sb),' before sifting and ',num2str(s),' after'])
if stop_sift
  disp('last iteration for this mode')
end
if display_sifting == 2
  pause(0.01)
else
  pause
end
end
 
%---------------------------------------------------------------------------------------------------
% displays the progression of the decomposition with the FIX and FIX_H stopping criteria
function display_emd_fixe(t,m,mp,r,envmin,envmax,envmoy,nbit,k,display_sifting)
subplot(3,1,1)
plot(t,mp);hold on;
plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');
title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' before sifting']);
set(gca,'XTick',[])
hold  off
subplot(3,1,2)
plot(t,m)
title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' after sifting']);
set(gca,'XTick',[])
subplot(3,1,3);
plot(t,r-m)
title('residue');
if display_sifting == 2
  pause(0.01)
else
  pause
end
end
 
%---------------------------------------------------------------------------------------
% defines new extrema points to extend the interpolations at the edges of the
% signal (mainly mirror symmetry)
function [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,x,z,nbsym)
  
  lx = length(x);
  
  if (length(indmin) + length(indmax) < 3)
    error('not enough extrema')
  end
 
    % boundary conditions for interpolations :
 
  if indmax(1) < indmin(1)
      if x(1) > x(indmin(1))
      lmax = fliplr(indmax(2:min(end,nbsym+1)));
      lmin = fliplr(indmin(1:min(end,nbsym)));
      lsym = indmax(1);
    else
      lmax = fliplr(indmax(1:min(end,nbsym)));
      lmin = [fliplr(indmin(1:min(end,nbsym-1))),1];
      lsym = 1;
    end
  else
 
    if x(1) < x(indmax(1))
      lmax = fliplr(indmax(1:min(end,nbsym)));
      lmin = fliplr(indmin(2:min(end,nbsym+1)));
      lsym = indmin(1);
    else
      lmax = [fliplr(indmax(1:min(end,nbsym-1))),1];
      lmin = fliplr(indmin(1:min(end,nbsym)));
      lsym = 1;
    end
  end
    
  if indmax(end) < indmin(end)
    if x(end) < x(indmax(end))
      rmax = fliplr(indmax(max(end-nbsym+1,1):end));
      rmin = fliplr(indmin(max(end-nbsym,1):end-1));
      rsym = indmin(end);
    else
      rmax = [lx,fliplr(indmax(max(end-nbsym+2,1):end))];
      rmin = fliplr(indmin(max(end-nbsym+1,1):end));
      rsym = lx;
    end
  else
    if x(end) > x(indmin(end))
      rmax = fliplr(indmax(max(end-nbsym,1):end-1));
      rmin = fliplr(indmin(max(end-nbsym+1,1):end));
      rsym = indmax(end);
    else
      rmax = fliplr(indmax(max(end-nbsym+1,1):end));
      rmin = [lx,fliplr(indmin(max(end-nbsym+2,1):end))];
      rsym = lx;
    end
  end
    
  tlmin = 2*t(lsym)-t(lmin);
  tlmax = 2*t(lsym)-t(lmax);
  trmin = 2*t(rsym)-t(rmin);
  trmax = 2*t(rsym)-t(rmax);
    
  % in case symmetrized parts do not extend enough
  if tlmin(1) > t(1) || tlmax(1) > t(1)
    if lsym == indmax(1)
      lmax = fliplr(indmax(1:min(end,nbsym)));
    else
      lmin = fliplr(indmin(1:min(end,nbsym)));
    end
    if lsym == 1
      error('bug')
    end
    lsym = 1;
    tlmin = 2*t(lsym)-t(lmin);
    tlmax = 2*t(lsym)-t(lmax);
  end   
    
  if trmin(end) < t(lx) || trmax(end) < t(lx)
    if rsym == indmax(end)
      rmax = fliplr(indmax(max(end-nbsym+1,1):end));
    else
      rmin = fliplr(indmin(max(end-nbsym+1,1):end));
    end
  if rsym == lx
    error('bug')
  end
    rsym = lx;
    trmin = 2*t(rsym)-t(rmin);
    trmax = 2*t(rsym)-t(rmax);
  end 
          
  zlmax =z(lmax); 
  zlmin =z(lmin);
  zrmax =z(rmax); 
  zrmin =z(rmin);
     
  tmin = [tlmin t(indmin) trmin];
  tmax = [tlmax t(indmax) trmax];
  zmin = [zlmin z(indmin) zrmin];
  zmax = [zlmax z(indmax) zrmax];
end
    
%---------------------------------------------------------------------------------------------------
%extracts the indices of extrema
function [indmin, indmax, indzer] = extr(x,t)
 
if(nargin==1)
  t=1:length(x);
end
 
m = length(x);
 
if nargout > 2
  x1=x(1:m-1);
  x2=x(2:m);
  indzer = find(x1.*x2<0);
 
  if any(x == 0)
    iz = find( x==0 );
    indz = [];
    if any(diff(iz)==1)
      zer = x == 0;
      dz = diff([0 zer 0]);
      debz = find(dz == 1);
      finz = find(dz == -1)-1;
      indz = round((debz+finz)/2);
    else
      indz = iz;
    end
    indzer = sort([indzer indz]);
  end
end
 
d = diff(x);
 
n = length(d);
d1 = d(1:n-1);
d2 = d(2:n);
indmin = find(d1.*d2<0 & d1<0)+1;
indmax = find(d1.*d2<0 & d1>0)+1;
 
 
% when two or more successive points have the same value we consider only one extremum in the middle of the constant area
% (only works if the signal is uniformly sampled)
 
if any(d==0)
 
  imax = [];
  imin = [];
 
  bad = (d==0);
  dd = diff([0 bad 0]);
  debs = find(dd == 1);
  fins = find(dd == -1);
  if debs(1) == 1
    if length(debs) > 1
      debs = debs(2:end);
      fins = fins(2:end);
    else
      debs = [];
      fins = [];
    end
  end
  if length(debs) > 0
    if fins(end) == m
      if length(debs) > 1
        debs = debs(1:(end-1));
        fins = fins(1:(end-1));
 
      else
        debs = [];
        fins = [];
      end
    end
  end
  lc = length(debs);
  if lc > 0
    for k = 1:lc
      if d(debs(k)-1) > 0
        if d(fins(k)) < 0
          imax = [imax round((fins(k)+debs(k))/2)];
        end
      else
        if d(fins(k)) > 0
          imin = [imin round((fins(k)+debs(k))/2)];
        end
      end
    end
  end
 
  if length(imax) > 0
    indmax = sort([indmax imax]);
  end
 
  if length(imin) > 0
    indmin = sort([indmin imin]);
  end
 
end
end
 
%---------------------------------------------------------------------------------------------------
 
function ort = io(x,imf)
% ort = IO(x,imf) computes the index of orthogonality
%
% inputs : - x    : analyzed signal
%          - imf  : empirical mode decomposition
 
n = size(imf,1);
 
s = 0;
 
for i = 1:n
  for j =1:n
    if i~=j
      s = s + abs(sum(imf(i,:).*conj(imf(j,:)))/sum(x.^2));
    end
  end
end
 
ort = 0.5*s;
end
%---------------------------------------------------------------------------------------------------
 
function [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin)
 
x = varargin{1};
if nargin == 2
  if isstruct(varargin{2})
    inopts = varargin{2};
  else
    error('when using 2 arguments the first one is the analyzed signal X and the second one is a struct object describing the options')
  end
elseif nargin > 2
  try
    inopts = struct(varargin{2:end});
  catch
    error('bad argument syntax')
  end
end
 
% default for stopping
defstop = [0.05,0.5,0.05];
 
opt_fields = {'t','stop','display','maxiterations','fix','maxmodes','interp','fix_h','mask','ndirs','complex_version'};
 
defopts.stop = defstop;
defopts.display = 0;
defopts.t = 1:max(size(x));
defopts.maxiterations = 2000;
defopts.fix = 0;
defopts.maxmodes = 0;
defopts.interp = 'spline';
defopts.fix_h = 0;
defopts.mask = 0;
defopts.ndirs = 4;
defopts.complex_version = 2;


opts = defopts;
 
if(nargin==1)
  inopts = defopts;
elseif nargin == 0
  error('not enough arguments')
end
 
 
names = fieldnames(inopts);
for nom = names'
  if ~any(strcmpi(char(nom), opt_fields))
    error(['bad option field name: ',char(nom)])
  end
  if ~isempty(eval(['inopts.',char(nom)])) % empty values are discarded
    eval(['opts.',lower(char(nom)),' = inopts.',char(nom),';'])
  end
end
t = opts.t;
stop = opts.stop;
display_sifting = opts.display;
MAXITERATIONS = opts.maxiterations;
FIXE = opts.fix;
MAXMODES = opts.maxmodes;
INTERP = opts.interp;
FIXE_H = opts.fix_h;
mask = opts.mask;
ndirs = opts.ndirs;
complex_version = opts.complex_version;
if ~isvector(x)
  error('X must have only one row or one column')
end
if size(x,1) > 1
  x = x.';
end
 
if ~isvector(t)
  error('option field T must have only one row or one column')
end
 
if ~isreal(t)
  error('time instants T must be a real vector')
end
 
if size(t,1) > 1
  t = t';
end
if (length(t)~=length(x))
  error('X and option field T must have the same length')
end
if ~isvector(stop) || length(stop) > 3
  error('option field STOP must have only one row or one column of max three elements')
end
if ~all(isfinite(x))
  error('data elements must be finite')
end
if size(stop,1) > 1
  stop = stop';
end
 
L = length(stop);
if L < 3
  stop(3)=defstop(3);
end
 
if L < 2
  stop(2)=defstop(2);
end
 
 
if ~ischar(INTERP) || ~any(strcmpi(INTERP,{'linear','cubic','spline'}))
  error('INTERP field must be ''linear'', ''cubic'', ''pchip'' or ''spline''')
end
 
%special procedure when a masking signal is specified
if any(mask)
  if ~isvector(mask) || length(mask) ~= length(x)
    error('masking signal must have the same dimension as the analyzed signal X')
  end
 
  if size(mask,1) > 1
    mask = mask.';
  end
  opts.mask = 0;
  imf1 = emd(x+mask,opts);
  imf2 = emd(x-mask,opts);
  if size(imf1,1) ~= size(imf2,1)
    warning('emd:warning',['the two sets of IMFs have different sizes: ',int2str(size(imf1,1)),' and ',int2str(size(imf2,1)),' IMFs.'])
  end
  S1 = size(imf1,1);
  S2 = size(imf2,1);
  if S1 ~= S2
    if S1 < S2
      tmp = imf1;
      imf1 = imf2;
      imf2 = tmp;
    end
    imf2(max(S1,S2),1) = 0;
  end
  imf = (imf1+imf2)/2;
end
sd = stop(1);
sd2 = stop(2);
tol = stop(3);
lx = length(x);
sdt = sd*ones(1,lx);
sd2t = sd2*ones(1,lx);
if FIXE
  MAXITERATIONS = FIXE;
  if FIXE_H
    error('cannot use both ''FIX'' and ''FIX_H'' modes')
  end
end
MODE_COMPLEX = ~isreal(x)*complex_version;
if MODE_COMPLEX && complex_version ~= 1 && complex_version ~= 2
  error('COMPLEX_VERSION parameter must equal 1 or 2')
end
% number of extrema and zero-crossings in residual
ner = lx;
nzr = lx;
r = x;
if ~any(mask) % if a masking signal is specified "imf" already exists at this stage
  imf = [];
end
k = 1;
% iterations counter for extraction of 1 mode
nbit=0;
% total iterations counter
NbIt=0;
end

⑥EEMD的函数代码(把以下代码变成函数,放在自己的文件夹下即可),注意eemd的调用了emd的函数,所以eemd不要单独使用哦。

function [modos its]=eemd(x,Nstd,NR,MaxIter)
%--------------------------------------------------------------------------
%WARNING: this code needs to include in the same
%directoy the file emd.m developed by Rilling and Flandrin.
% -------------------------------------------------------------------------
%  OUTPUT
%   modos: contain the obtained modes in a matrix with the rows being the modes
%   its: contain the iterations needed for each mode for each realization
%
%  INPUT
%  x: signal to decompose
%  Nstd: noise standard deviation
%  NR: number of realizations
%  MaxIter: maximum number of sifting iterations allowed.
% -------------------------------------------------------------------------
%   Syntax
%
%   modos=eemd(x,Nstd,NR,MaxIter)
%  [modos its]=eemd(x,Nstd,NR,MaxIter)
% -------------------------------------------------------------------------
%  NOTE:   if Nstd=0 and NR=1, the EMD decomposition is obtained.
% -------------------------------------------------------------------------
 
desvio_estandar=std(x);
x=x/desvio_estandar;
xconruido=x+Nstd*randn(size(x));
[modos, o, it]=emd(xconruido,'MAXITERATIONS',MaxIter);
modos=modos/NR;
iter=it;
if NR>=2
    for i=2:NR
        xconruido=x+Nstd*randn(size(x));
        [temp, ort, it]=emd(xconruido,'MAXITERATIONS',MaxIter);
        temp=temp/NR;
        lit=length(it);
        [p liter]=size(iter);
        if lit<liter
            it=[it zeros(1,liter-lit)];
        end;
        if liter<lit
            iter=[iter zeros(p,lit-liter)];
        end;
        
        iter=[iter;it];
        
        [filas columnas]=size(temp);
        [alto ancho]=size(modos);
        diferencia=alto-filas;
        if filas>alto
            modos=[modos; zeros(abs(diferencia),ancho)];
        end;
        if alto>filas
            temp=[temp;zeros(abs(diferencia),ancho)];
        end;
        
        modos=modos+temp;
    end;
end;
its=iter;
modos=modos*desvio_estandar;
end