注:hive其他语法在hive官网有说明,建议初学者,去官网学习一手的资料,
官网:https://cwiki.apache.org/confluence/display/Hive/Home#Home-UserDocumentation
官网说明
Hive建表方式共有三种:
直接建表法
查询建表法
like建表法
首先看官网介绍
CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name -- (Note: TEMPORARY available in Hive 0.14.0 and later)
[(col_name data_type [COMMENT col_comment], ... [constraint_specification])]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[SKEWED BY (col_name, col_name, ...) -- (Note: Available in Hive 0.10.0 and later)]
ON ((col_value, col_value, ...), (col_value, col_value, ...), ...)
[STORED AS DIRECTORIES]
[
[ROW FORMAT row_format]
[STORED AS file_format]
| STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)] -- (Note: Available in Hive 0.6.0 and later)
]
[LOCATION hdfs_path]
[TBLPROPERTIES (property_name=property_value, ...)] -- (Note: Available in Hive 0.6.0 and later)
[AS select_statement]; -- (Note: Available in Hive 0.5.0 and later; not supported for external tables)
CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
LIKE existing_table_or_view_name
[LOCATION hdfs_path];
data_type
: primitive_type
| array_type
| map_type
| struct_type
| union_type -- (Note: Available in Hive 0.7.0 and later)
primitive_type
: TINYINT
| SMALLINT
| INT
| BIGINT
| BOOLEAN
| FLOAT
| DOUBLE
| DOUBLE PRECISION -- (Note: Available in Hive 2.2.0 and later)
| STRING
| BINARY -- (Note: Available in Hive 0.8.0 and later)
| TIMESTAMP -- (Note: Available in Hive 0.8.0 and later)
| DECIMAL -- (Note: Available in Hive 0.11.0 and later)
| DECIMAL(precision, scale) -- (Note: Available in Hive 0.13.0 and later)
| DATE -- (Note: Available in Hive 0.12.0 and later)
| VARCHAR -- (Note: Available in Hive 0.12.0 and later)
| CHAR -- (Note: Available in Hive 0.13.0 and later)
array_type
: ARRAY < data_type >
map_type
: MAP < primitive_type, data_type >
struct_type
: STRUCT < col_name : data_type [COMMENT col_comment], ...>
union_type
: UNIONTYPE < data_type, data_type, ... > -- (Note: Available in Hive 0.7.0 and later)
row_format
: DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
[NULL DEFINED AS char] -- (Note: Available in Hive 0.13 and later)
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
file_format:
: SEQUENCEFILE
| TEXTFILE -- (Default, depending on hive.default.fileformat configuration)
| RCFILE -- (Note: Available in Hive 0.6.0 and later)
| ORC -- (Note: Available in Hive 0.11.0 and later)
| PARQUET -- (Note: Available in Hive 0.13.0 and later)
| AVRO -- (Note: Available in Hive 0.14.0 and later)
| INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname
constraint_specification:
: [, PRIMARY KEY (col_name, ...) DISABLE NOVALIDATE ]
[, CONSTRAINT constraint_name FOREIGN KEY (col_name, ...) REFERENCES table_name(col_name, ...) DISABLE NOVALIDATE
一、hive的string和varchar的区别
简要介绍:
Hive有2种类型用于存储变长文本。
1.Hive-0.12.0版本引入了VARCHAR类型,VARCHAR类型使用长度指示器(1到65355)创建,长度指示器定义了在字符串中允许的最大字符数量。如果一个字符串值转换为或者被赋予一个varchar值,其长度超过了长度指示器则该字符串值会自动被截断。
2.STRING存储变长的文本,对长度没有限制。理论上将STRING可以存储的大小为2GB,但是存储特别大的对象时效率可能受到影响,可以考虑使用Sqoop提供的大对象支持。
二、两者主要区别:
1.VARCHAR与STRING类似,但是STRING存储变长的文本,对长度没有限制;varchar长度上只允许在1-65355之间。
2.还没有通用的UDF可以直接用于VARCHAR类型,可以使用String UDF代替,VARCHAR将会转换为String再传递给UDF。
观察可发现一共有三种建表方式,接下来我们将一一讲解。
1.直接建表法:
create table table_name(col_name data_type);
一个复杂的例子
主要要按照上面的定义的格式顺序去进行编写
CREATE EXTERNAL TABLE IF NOT EXISTS `dmp_clearlog` (
`date_log` string COMMENT 'date in file',
`hour` int COMMENT 'hour',
`device_id` string COMMENT '(android) md5 imei / (ios) origin mac',
`imei_orgin` string COMMENT 'origin value of imei',
`mac_orgin` string COMMENT 'origin value of mac',
`mac_md5` string COMMENT 'mac after md5 encrypt',
`android_id` string COMMENT 'androidid',
`os` string COMMENT 'operating system',
`ip` string COMMENT 'remote real ip',
`app` string COMMENT 'appname' )
COMMENT 'cleared log of origin log'
PARTITIONED BY (
`date` date COMMENT 'date used by partition'
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
TBLPROPERTIES ('creator'='szh', 'crate_time'='2018-06-07')
;
这里我们针对里面的一些不同于关系型数据库的地方进行说明。
row_format
: DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
[NULL DEFINED AS char] -- (Note: Available in Hive 0.13 and later)
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
Hive将HDFS上的文件映射成表结构,通过分隔符来区分列(比如’,’ ‘;’ or ‘^’ 等),row format就是用于指定序列化和反序列化的规则。
比如对于以下记录:
1,xiaoming,book-TV-code,beijing:chaoyang-shagnhai:pudong
2,lilei,book-code,nanjing:jiangning-taiwan:taibei
3,lihua,music-book,heilongjiang:haerbin
逗号用于分割列(FIELDS TERMINATED BY char:对应ID、name、hobby(数组形式,COLLECTION ITEMS TERMINATED BY char)、address(键值对形式map,MAP KEYS TERMINATED BY char)),而LINES TERMINATED BY char 用于区分不同条的数据,默认是换行符;
file format(HDFS文件存放的格式)
默认是TEXTFILE,即文本格式,可以直接打开。
如下:根据上述文件内容,创建一个表t1
create table t1(
id int
,name string
,hobby array<string>
,add map<String,string>
)
row format delimited
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':'
;
下面插入数据
注:一般很少用insert (不是insert overwrite)语句,因为就算就算插入一条数据,也会调用MapReduce,这里我们选择Load Data的方式。
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
然后上载
load data local inpath '/home/hadoop/Desktop/data' overwrite into table t1;
external
未被external修饰的是内部表(managed table),被external修饰的为外部表(external table);
区别:
内部表数据由Hive自身管理,外部表数据由HDFS管理;
内部表数据存储的位置是hive.metastore.warehouse.dir(默认:/user/hive/warehouse),外部表数据的存储位置由自己制定;
删除内部表会直接删除元数据(metadata)及存储数据;删除外部表仅仅会删除元数据,HDFS上的文件并不会被删除;
对内部表的修改会将修改直接同步给元数据,而对外部表的表结构和分区进行修改,则需要修复(MSCK REPAIR TABLE table_name;)
创建一个外部表t2
create external table t2(
id int
,name string
,hobby array<string>
,add map<String,string>
)
row format delimited
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':'
location '/user/t2'
;
装载数据
load data local inpath '/home/hadoop/Desktop/data' overwrite into table t2;
2.查询建表法
通过AS 查询语句完成建表:将子查询的结果存在新表里,有数据
一般用于中间表
CREATE TABLE new_key_value_store
ROW FORMAT SERDE "org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe"
STORED AS RCFile
AS
SELECT (key % 1024) new_key, concat(key, value) key_value_pair
FROM key_value_store
SORT BY new_key, key_value_pair;
3.like建表法
会创建结构完全相同的表,但是没有数据。
常用语中间表
CREATE TABLE empty_key_value_store
LIKE key_value_store;