hadoop的集群先搞二台机器,一台管理机,一台node机,为什么呢。因为钱,机子也要钱。数据量是逐步增长起来的。如果一台node不能满足需求了,在增加node节点到集群。

在开始安装配置前,最好把该篇文章看上几遍,理顺了,在开始。特别是我踩过的坑。 

一,服务器说明

1. 10.0.0.237 bigserver1       //master  
2. 10.0.0.236 bigserver2      //datanode

二,修改主机名,并配置hosts

1,修改主机名

1. [root@localhost ~]# hostname  
2. localhost.localdomain  
3. [root@localhost ~]# hostname bigserver1  
4. [root@localhost ~]# hostname  
5. bigserver1

2, 在/etc/hosts文件中增加,所有节点一样

1. 10.0.0.236 bigserver2  
2. 10.0.0.237 bigserver1

三,关闭防火墙和selinux

1. # systemctl stop firewalld      //停止  
2. # systemctl disable firewalld   //取消启动  
3.   
4. # cat /etc/sysconfig/selinux  
5. SELINUX=disabled   //关闭

改完重启一下电脑。hadoop安装配置好了以后,防火墙可以打开,开放端口。

四,ssh免密码登录

1. # ssh-keygen -t rsa   
2.   
3. # ssh-copy-id -i ~/.ssh/id_rsa.pub root@10.0.0.236 -p 22  
4. # ssh-copy-id -i ~/.ssh/id_rsa.pub root@10.0.0.237 -p 22   
5.   
6. # scp ~/.ssh/id_rsa root@10.0.0.236:/root/.ssh/  
7. # scp ~/.ssh/id_rsa root@10.0.0.237:/root/.ssh/  
8.   
9. 登录到236和237后  
10. # cd ~/.ssh/  
11. # chmod 600 id_rsa

我是在本机生成了公私钥,分别传到了236,237机器。

五,安装java1.8

1. # yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel

六,下载hadoop

https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-2.7.7/hadoop-2.7.7.tar.gz

大家根据自己的需求去下载。

1. # tar zxvf hadoop-2.7.7.tar.gz  
2. # mkdir /bigdata  
3. # mv hadoop-2.2.7 /bigdata/hadoop  
4.   
5. # mkdir -pv /bigdata/hadoop/{tmp,var,dfs}  
6. # mkdir -pv /bigdata/hadoop/dfs/{name,data}

七,配置hadoop

1,备份

1. # cd /bigdata/hadoop/etc  
2. # cp -r hadoop hadoop_bak

这一步很重要,养成一个良好的习惯会事半功倍。

2,配置core-site.xml

1. <property>  
2.    <name>hadoop.tmp.dir</name>  
3.    <value>/bigdata/hadoop/tmp</value>  
4. </property>  
5. <property>  
6. default.name</name>  
7. //bigserver1:9000</value>  
8. </property>

在<configuration></configuration>中添加

3,修改 hadoop-env.sh

1. # whereis javac  
2. javac: /usr/bin/javac /usr/share/man/man1/javac.1.gz  
3.   
4. # ll /usr/bin/javac  
5. lrwxrwxrwx. 1 root root 23 Dec 27 00:08 /usr/bin/javac -> /etc/alternatives/javac  
6.   
7. # ll /etc/alternatives/javac  
8. lrwxrwxrwx. 1 root root 70 Dec 27 00:08 /etc/alternatives/javac -> /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-1.el7_6.x86_64/bin/javac  
9. //以上是查找环境变量  
10.   
11. # echo "export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-1.el7_6.x86_64" >> ~/.bashrc  
12. # source ~/.bashrc  
13. # vim hadoop-env.sh  
14. 将export JAVA_HOME=${JAVA_HOME}替换成  
15. export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-1.el7_6.x86_64

如果不是管理工具包安装,填解压目录,即可

4,配置hdfs-site.xml

1. <property>  
2.    <name>dfs.name.dir</name>  
3.    <value>/bigdata/hadoop/dfs/name</value>  
4. </property>  
5. <property>  
6.    <name>dfs.data.dir</name>  
7.    <value>/bigdata/hadoop/dfs/data</value>  
8. </property>  
9. <property>  
10.    <name>dfs.replication</name>  
11.    <value>2</value>  
12. </property>  
13. <property>  
14.    <name>dfs.permissions</name>  
15.    <value>false</value>  
16. </property>

5,配置mapred-site.xml

1. # cp mapred-site.xml.template mapred-site.xml  
2. # vim mapred-site.xml  
3. <property>  
4.    <name>mapred.job.tracker</name>  
5.    <value>bigserver1:49001</value>  
6. </property>  
7.   
8. <property>  
9.    <name>mapred.local.dir</name>  
10. var</value>  
11. </property>  
12.   
13. <property>  
14.    <name>mapreduce.framework.name</name>  
15.    <value>yarn</value>  
16. </property>

6,修改slaves

1. # cat slaves  
2. bigserver2

7,配置yarn-site.xml

1. <property>  
2.    <name>yarn.resourcemanager.hostname</name>  
3.    <value>bigserver1</value>  
4. </property>  
5. <property>  
6.    <name>yarn.resourcemanager.address</name>  
7.    <value>${yarn.resourcemanager.hostname}:8032</value>  
8. </property>  
9. <property>  
10.    <name>yarn.resourcemanager.scheduler.address</name>  
11.    <value>${yarn.resourcemanager.hostname}:8030</value>  
12. </property>  
13. <property>  
14.    <name>yarn.resourcemanager.webapp.address</name>  
15.    <value>${yarn.resourcemanager.hostname}:8088</value>  
16. </property>  
17. <property>  
18.    <name>yarn.resourcemanager.webapp.https.address</name>  
19.    <value>${yarn.resourcemanager.hostname}:8090</value>  
20. </property>  
21. <property>  
22.    <name>yarn.resourcemanager.resource-tracker.address</name>  
23.    <value>${yarn.resourcemanager.hostname}:8031</value>  
24. </property>  
25. <property>  
26.    <name>yarn.resourcemanager.admin.address</name>  
27.    <value>${yarn.resourcemanager.hostname}:8033</value>  
28. </property>  
29. <property>  
30.    <name>yarn.nodemanager.aux-services</name>  
31.    <value>mapreduce_shuffle</value>  
32. </property>  
33. <property>  
34.    <name>yarn.nodemanager.vmem-check-enabled</name>  
35.    <value>false</value>  
36. </property>

不要轻易的去配置cpu,内存等。不然会影响mapredure。例如:

yarn.nodemanager.resource.memory-mb
yarn.scheduler.maximum-allocation-mb
yarn.nodemanager.vmem-pmem-ratio等

以下是我配置不全导致的错误 :

2018-12-27 09:11:54,178 INFO [AsyncDispatcher event handler] org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl: attempt_1545833322243_0001_m_000007_0 TaskAttempt Transitioned from NEW to UNASSIGNED
2018-12-27 09:11:54,178 INFO [AsyncDispatcher event handler] org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl: attempt_1545833322243_0001_m_000008_0 TaskAttempt Transitioned from NEW to UNASSIGNED
2018-12-27 09:11:54,178 INFO [AsyncDispatcher event handler] org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl: attempt_1545833322243_0001_r_000000_0 TaskAttempt Transitioned from NEW to UNASSIGNED
2018-12-27 09:11:54,179 INFO [Thread-52] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: mapResourceRequest:<memory:1024, vCores:1>
2018-12-27 09:11:54,185 INFO [Thread-52] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: reduceResourceRequest:<memory:1024, vCores:1>
2018-12-27 09:11:54,196 INFO [eventHandlingThread] org.apache.hadoop.mapreduce.jobhistory.JobHistoryEventHandler: Event Writer setup for JobId: job_1545833322243_0001, File: hdfs://bigserver1:9000/tmp/hadoop-yarn/staging/root/.staging/job_1545833322243_0001/job_1545833322243_0001_1.jhist
2018-12-27 09:11:55,138 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Before Scheduling: PendingReds:1 ScheduledMaps:9 ScheduledReds:0 AssignedMaps:0 AssignedReds:0 CompletedMaps:0 CompletedReds:0 ContAlloc:0 ContRel:0 HostLocal:0 RackLocal:0
2018-12-27 09:11:55,194 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerRequestor: getResources() for application_1545833322243_0001: ask=3 release= 0 newContainers=0 finishedContainers=0 resourcelimit=<memory:0, vCores:0> knownNMs=1
2018-12-27 09:11:55,195 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Going to preempt 1 due to lack of space for maps
2018-12-27 09:11:56,198 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Going to preempt 1 due to lack of space for maps
2018-12-27 09:11:57,202 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Going to preempt 1 due to lack of space for maps

到这儿,hadoop就配置完成了,master节点和datanode节点配置一样。

八,初始化hadoop,并运行hadoop

1,只需要在master节点初始化,node节点不需要

1. # cd /bigdata/hadoop/bin/  
2. ./hadoop namenode -format

初始化成功后,会/bigdata/hadoop/dfs/name多出一个current文件夹。初始化一次后,最好不要在重新初始化,最好不要在重新初始化,最好不要在重新初始化。重要的事情说三遍。会导致master节点和datanode节点对不上。后面会具体说明。

2,只需要在master启动hadoop

1. # cd /bigdata/hadoop/sbin/  
2. # ./start-all.sh  
3. This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh  
4. Starting namenodes on [bigserver1]  
5. bigserver1: starting namenode, logging to /home/bigdata/hadoop/logs/hadoop-root-namenode-bigserver1.out  
6. bigserver2: starting datanode, logging to /home/bigdata/hadoop/logs/hadoop-root-datanode-bigserver2.out  
7. Starting secondary namenodes [0.0.0.0]  
8. 0.0.0.0: starting secondarynamenode, logging to /home/bigdata/hadoop/logs/hadoop-root-secondarynamenode-bigserver1.out  
9. starting yarn daemons  
10. starting resourcemanager, logging to /home/bigdata/hadoop/logs/yarn-root-resourcemanager-bigserver1.out  
11. bigserver2: starting nodemanager, logging to /home/bigdata/hadoop/logs/yarn-root-nodemanager-bigserver2.out

3,检查hadoop集群各节点是否正常启动

1. //master节点  
2. [root@bigserver1 name]# netstat -tpnl |grep java  
3. tcp        0      0 0.0.0.0:50070           0.0.0.0:*               LISTEN      5573/java  
4. tcp        0      0 10.0.0.237:9000         0.0.0.0:*               LISTEN      5573/java  
5. tcp        0      0 0.0.0.0:50090           0.0.0.0:*               LISTEN      5768/java  
6. tcp6       0      0 10.0.0.237:8088         :::*                    LISTEN      5930/java  
7. tcp6       0      0 10.0.0.237:8030         :::*                    LISTEN      5930/java  
8. tcp6       0      0 10.0.0.237:8031         :::*                    LISTEN      5930/java  
9. tcp6       0      0 10.0.0.237:8032         :::*                    LISTEN      5930/java  
10. tcp6       0      0 10.0.0.237:8033         :::*                    LISTEN      5930/java  
11. [root@bigserver1 name]# jps  
12. 3457 RunJar  
13. 6851 Jps  
14. 5573 NameNode  
15. 5768 SecondaryNameNode  
16. 5930 ResourceManager  
17.   
18. //datanode节点  
19. [root@bigserver2 sbin]# netstat -tpnl |grep java  
20. tcp        0      0 127.0.0.1:44205         0.0.0.0:*               LISTEN      3405/java  
21. tcp        0      0 0.0.0.0:50010           0.0.0.0:*               LISTEN      3405/java  
22. tcp        0      0 0.0.0.0:50075           0.0.0.0:*               LISTEN      3405/java  
23. tcp        0      0 0.0.0.0:50020           0.0.0.0:*               LISTEN      3405/java  
24. tcp6       0      0 :::43959                :::*                    LISTEN      3520/java  
25. tcp6       0      0 :::13562                :::*                    LISTEN      3520/java  
26. tcp6       0      0 :::8040                 :::*                    LISTEN      3520/java  
27. tcp6       0      0 :::8042                 :::*                    LISTEN      3520/java  
28. [root@bigserver2 sbin]# jps  
29. 3520 NodeManager  
30. 5761 Jps  
31. 3405 DataNode

jps显示的内容,如果少了一个说明没有配置成功。如果master和datanode节点进程缺少也说明没有成功。

如果都没有什么问题的话,可以通过url来访问了。

http://10.0.0.237:50070,节点健康检查工具

http://10.0.0.237:8088,集群各节点任务分析工具

如下图

hadoop集群网络连接失败 hadoop集群搭建问题_hadoop集群网络连接失败

hadoop 健康检查

hadoop集群网络连接失败 hadoop集群搭建问题_hadoop集群网络连接失败_02

hadoop集群

4,只需要在master停止hadoop

1. root@localhost sbin]# ./stop-all.sh   //停止  
2. This script is Deprecated. Instead use stop-dfs.sh and stop-yarn.sh  
3. Stopping namenodes on [bigserver1]  
4. bigserver1: stopping namenode  
5. bigserver2: no datanode to stop   //刚开始配置时,datanode没有启动成功报的错  
6. Stopping secondary namenodes [0.0.0.0]  
7. 0.0.0.0: stopping secondarynamenode  
8. stopping yarn daemons  
9. stopping resourcemanager  
10. bigserver2: stopping nodemanager  
11. no proxyserver to stop

通过jps查看,缺少了DataNode。但是nodemanager是起来的。问题出在master和datanode节点,集群点没有对上,这让我想起了mysql replication position,对不上也会出现无法同步的问题。导致no datanode to stop这个原因的产生,猜测是master节点,进行了多次的初始化。hadoop namenode -format。

解决办法如下:

master点,打开/bigdata/hadoop/dfs/name/current/VERSION,
datanode点,打开/bigdata/hadoop/dfs/data/current/VERSION,
将master节点的clusterID,copy到datanode中,重启就好。

网上查了一下,有人说同步namespaceID也可以,但是我用hadoop2.7.7版本中,datanode节点,/bigdata/hadoop/dfs/data/current/VERSION文件中根本没有namespaceID,我又不想加。哈哈。也不确定这样行不行。

九,测试hadoop集群

1,master节点hdfs创建测试目录

1. # ./bin/hdfs dfs -mkdir /test  
2. # ./bin/hdfs dfs -ls /  
3. Found 3 items  
4. drwxr-xr-x - root supergroup 0 2018-12-26 20:42 /test  
5. drwx------ - root supergroup 0 2018-12-26 21:27 /tmp  
6. drwxr-xr-x - root supergroup 0 2018-12-26 20:20 /user

2,master节点上传测试文件到hdfs

1. # ./bin/hdfs dfs -put ./etc/hadoop/*.xml /test/

3,master节点测试mapredure

1. # ./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar grep /test/ ./output 'dfs[a-z.]+'  
2. 18/12/27 09:11:46 INFO client.RMProxy: Connecting to ResourceManager at bigserver1/10.0.0.237:8032  
3. 18/12/27 09:11:48 INFO input.FileInputFormat: Total input paths to process : 9  
4. 18/12/27 09:11:48 INFO mapreduce.JobSubmitter: number of splits:9  
5. 18/12/27 09:11:48 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1545833322243_0001  
6. 18/12/27 09:11:49 INFO impl.YarnClientImpl: Submitted application application_1545833322243_0001  //datanode端userlogs中有日志  
7. 18/12/27 09:11:49 INFO mapreduce.Job: The url to track the job: http://bigserver1:8088/proxy/application_1545833322243_0001/  
8. 18/12/27 09:11:49 INFO mapreduce.Job: Running job: job_1545833322243_0001  
9. 18/12/27 09:11:55 INFO mapreduce.Job: Job job_1545833322243_0001 running in uber mode : false  
10. 18/12/27 09:11:55 INFO mapreduce.Job: map 0% reduce 0%  //这块卡死,map reduce都是0

到datanode节点查看日志:

1. # cd /bigdata/hadoop/logs/userlogs  
2.   
3. [root@bigserver2 userlogs]# ls  
4. application_1545825824765_0001 application_1545827800765_0001 application_1545828806710_0001 application_1545829094007_0001 application_1545833322243_0001  
5.   
6. [root@bigserver2 userlogs]# ll |grep application_1545833322243_0001  
7. drwx--x--- 3 root root 52 12月 27 09:11 application_1545833322243_0001  
8.   
9. [root@bigserver2 userlogs]# cd application_1545833322243_0001  
10. [root@bigserver2 application_1545833322243_0001]# cd container_1545833322243_0001_01_000001/  
11.   
12. [root@bigserver2 container_1545833322243_0001_01_000001]# ls  
13. stderr stdout syslog  
14.   
15. [root@bigserver2 container_1545833322243_0001_01_000001]# tail -f syslog  
16. 2018-12-27 09:14:12,652 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Going to preempt 1 due to lack of space for maps  
17. 2018-12-27 09:14:13,654 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Going to preempt 1 due to lack of space for maps  
18. 2018-12-27 09:14:14,657 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Going to preempt 1 due to lack of space for maps  
19. 2018-12-27 09:14:15,659 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Going to preempt 1 due to lack of space for maps  
20. 2018-12-27 09:14:16,662 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Going to preempt 1 due to lack of space for maps  
21. 2018-12-27 09:14:17,665 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Going to preempt 1 due to lack of space for maps  
22. 。。。。。。。。。。。。。。。。。。。。忽略。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

解决办法:上面也提到了,就是yarn-site.xml,配置内存和cpu相关的去掉。重启hadoop就好

看一下成功后

hadoop集群网络连接失败 hadoop集群搭建问题_mapreduce_03

mapredure测试成功

十,查日志

hadoop的日志,还是很多的,还没有装hbase,hive,spark等。除了进入服务器查看外,还可以通过网页查看。

hadoop集群网络连接失败 hadoop集群搭建问题_java_04

datanode logs 页面访问

hadoop集群网络连接失败 hadoop集群搭建问题_hadoop集群网络连接失败_05

master log页面

不怕问题,就怕出了问题,不知道错在哪里。随便点点网页log就发现个问题

2018-12-27 10:23:04,569 ERROR org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode: Exception in doCheckpoint
java.io.IOException: Inconsistent checkpoint fields.
LV = -63 namespaceID = 1131284630 cTime = 0 ; clusterId = CID-ea915c79-c5cb-4d23-bc55-e4530f999cb0 ; blockpoolId = BP-508509447-10.0.0.237-1545809802003.
Expecting respectively: -63; 839710719; 0; CID-66e894a8-1cb1-4b8e-bac4-2bc3b526e062; BP-262790598-10.0.0.237-1545803654780.
at org.apache.hadoop.hdfs.server.namenode.CheckpointSignature.validateStorageInfo(CheckpointSignature.java:134)
at org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode.doCheckpoint(SecondaryNameNode.java:531)
at org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode.doWork(SecondaryNameNode.java:395)
at org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode$1.run(SecondaryNameNode.java:361)
at org.apache.hadoop.security.SecurityUtil.doAsLoginUserOrFatal(SecurityUtil.java:415)
at org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode.run(SecondaryNameNode.java:357)
at java.lang.Thread.run(Thread.java:748)

解决办法:

mater节点,删除该目录/bigdata/hadoop/tmp/dfs/namesecondary/current下的所有文件,重启hadoop即可。