2021.03.18更新  上传仿真坏境和代码

 

由于config文件忘记上传了,内容直接贴在文末啦。

注意:因为加了opencv目标跟踪的 CSR-DCF 函数,所以第一次跑代码要在显示窗口上手动圈一下要跟踪的小车。(圈的不好会影响 CSR-DCF 的效果)


cplex车辆路径规划python vrep小车路径规划_自动驾驶

网络框架


cplex车辆路径规划python vrep小车路径规划_神经网络_02

vrep仿真环境

cplex车辆路径规划python vrep小车路径规划_自动驾驶_03

训练结果


cplex车辆路径规划python vrep小车路径规划_自动驾驶_04

不同的小车运动速度 实验结果


cplex车辆路径规划python vrep小车路径规划_无人机_05

不同的小车运动速度 不同的环境 实验结果

2020.07.01更新  历史新突破:loss收敛,reward收敛

问题:智能体在训练后期只执行一个动作,也就是在不同的输入状态下,神经网络的参数、输出结果固定不变了。

我尝试的方法:

0、将输入进行归一化。img/255.0

1、将cnn的卷积核调整合适。因为输入图像是64*64的大小,而行人在相机视野里只占很小的一部分。但是我关注的不是图像的细节,而是行人在无人机的哪个方向,所以卷积核应该稍微大一点。(将3*3,stride=1调整为6*6,8*8,stride=2)

cplex车辆路径规划python vrep小车路径规划_深度学习_06

2、参数初始化。一般权重参数0.01均方差,0均值的高斯分布是万能的,不行就试更大的。偏差参数全0即可。

3、将relu激活函数换成了leaky_relu。relu梯度消失的问题。

4、增加神经网络深度。增加两层全连接层。

5、调整随机explore的概率。在之前的训练中,1000step左右loss就下降到0.5以内了,所以随机探索的概率是这样的:<200steps  rate=0.9,保证有足够多的随机探索状态;  200-1000 由0.9下降到0.15;>1000steps  rate保持0.15。

6、把value和advantage去了,化繁为简。


cplex车辆路径规划python vrep小车路径规划_无人机_07

原始版本网络参数


cplex车辆路径规划python vrep小车路径规划_深度学习_08

新版本网络参数

 结果展示:


cplex车辆路径规划python vrep小车路径规划_自动驾驶_09

无人机跟踪行人


cplex车辆路径规划python vrep小车路径规划_自动驾驶_10

最后保持在0.15左右

cplex车辆路径规划python vrep小车路径规划_无人机_11

reward其实设计的不好,就是-distance

2020.06.30更新

经过好几个版本的修改,在6.25版本的前5000步,loss有了下降趋势。但是5000后又上升了我去

cplex车辆路径规划python vrep小车路径规划_cplex车辆路径规划python_12

cplex车辆路径规划python vrep小车路径规划_自动驾驶_13

 reward惨不忍睹:

cplex车辆路径规划python vrep小车路径规划_无人机_14

2020.06.12更新

1、键盘控制无人机运动并保存图像、位置信息(Python)

code

功能:

1、键盘 w s a d up down left right 八个按键控制无人机 向前 向后 向左 向右 上升 下降 左旋 右旋 \

2、记录与行人的距离、动作序号、图像

3、有前置摄像、下置摄像两个场景

cplex车辆路径规划python vrep小车路径规划_自动驾驶_15

cplex车辆路径规划python vrep小车路径规划_深度学习_16

 2、前置摄像opencv行人识别

 

功能:将图像中的行人标出

缺点:模糊的、不完整的不能识别

cplex车辆路径规划python vrep小车路径规划_自动驾驶_17

cplex车辆路径规划python vrep小车路径规划_深度学习_18

cplex车辆路径规划python vrep小车路径规划_神经网络_19

cplex车辆路径规划python vrep小车路径规划_深度学习_20

3、DRQN训练无人机跟踪行人

代码:还在修改还在跑,仿真太慢了。

结果:上一阶段,前置摄像头的结果不太理想,我认为很大的原因是摄像头容易看不到行人。所以换了下置摄像头,

先放一个150局的结果图,reward有上升趋势,loss不收敛。继续改吧。

cplex车辆路径规划python vrep小车路径规划_自动驾驶_21

cplex车辆路径规划python vrep小车路径规划_神经网络_22

 (内容不多,但是真的花了很多时间去研究vrep怎么用。感兴趣就坚持吧!)

config.py

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

""" parameters setting """

import numpy as np

restore = False
valid_actions = ['FWD','BCK','Left','Right','UP','DWN']#'UP','DWN','STOP','ROT_CW','ROT_CCW'
  # rad/s (pioneer 3dx: 5.6 rad/s: ~ 0.56m/s)  # similar to human's normal speed

wait_response = False # True: Synchronous response(too much delay)
valid_actions_dict = {valid_actions[0]: np.array([1, 0, 0]),
                      valid_actions[1]: np.array([-1, 0, 0]),
                      valid_actions[2]: np.array([0, 1, 0]),
                      valid_actions[3]: np.array([0,-1, 0]),
                      valid_actions[4]: np.array([0, 0, 0])}

# network
batch_size = 32  # How many experiences to use for each training step.
update_freq = 4  # How often to perform a training step.
gamma = .99  # Discount factor on the target Q-values
startE = 1  # Starting chance of random action
endE = 0.1  # Final chance of random action
path = "./DQN_trainedModel"   # The path to save our model to.
annealing_steps = 10000.  # How many steps of training to reduce startE to endE.
num_episodes = 500     # How many episodes of game environment to train network with.
pre_train_steps = 5000  # How many steps of random actions before training begins.
max_epLength = 50         # The max allowed length of our episode.
tau = 0.001               # Rate to update target network toward primary network
replay_memory = 50000

time_step = 0.05
best_distance = 3.5/2

il_steps = 1000000   # total imitation learning step
il_update_freq = 4