Kafka客户端包括producer及consumer API,通过在wireshark中查看所捕获的请求,能更好的理解从producer及consumer到broker的网络连接过程。对于producer端,为了发送数据,需要建立client到broker节点的TCP长连接,此长连接可用于更新metadata,发送消息到broker,在超过配置的空闲时间后,为了节省资源,长连接将被关闭。

1:producer kerberos 认证连接

在创建producer实例时,调用KafkaProducer类中的函数createChannelBuilder,因为配置了kerberos认证,将启动client到KDC的认证过程

private KafkaProducer(ProducerConfig config, Serializer<K> keySerializer, Serializer<V> valueSerializer)
{
    ......
    ChannelBuilder channelBuilder = ClientUtils.createChannelBuilder(config.values());
    ......
}
上面第一个参数里配置的authentication为SASL_PLAINTEXT,所以此方法将创建一个SaslChannelBuilder 通道构造器,
channelBuilder = new SaslChannelBuilder(mode, loginType, securityProtocol, clientSaslMechanism, saslHandshakeRequestEnable);
对应输入参数为
mode = CLIENT
loginType = CLIENT
securityProtocol = SASL_PLAINTEXT
clientSaslMechanism = GSSAPI
saslHandshakeRequestEnable = true

创建好通道构造器后,就是设置配置信息,调用channelBuilder.configure(configs);在此方法中将创建loginManager实例,而在loginManager构造的时候,将取得KerberosLogin实例,并登陆,
login = hasKerberos ? new KerberosLogin() : new DefaultLogin();
login.configure(configs, loginContext);
login.login();

从Wireshark的捕获可以看到请求与响应的过程,默认情况下,kerberos使用UDP协议,前面4条便是使用的UDP协议,但因为受限于请求包的长度限制,所以返回失败,错误码是KRB5KDC_ERR_PREAUTH_REQUIRED及KRB5KRB_ERR_RESPONSE_TOO_BIG,于是在第5条重新使用TCP发送AS-REQ请求到目标端口88,并收到AS-REP响应

java检测kafka连接状态 查看kafka的连接数_java检测kafka连接状态

 

下面是到KDC的Authentication Service的连接过程:

java检测kafka连接状态 查看kafka的连接数_TCP_02

 

 请求AS成功后,紧接着就是到KDC的Ticket Granting Service以获取票据的连接过程

java检测kafka连接状态 查看kafka的连接数_TCP_03

 

 

具体可以参考文章:KRB5KDC_ERR_PREAUTH_REQUIRED

java检测kafka连接状态 查看kafka的连接数_长连接_04

 

2:producer sender线程

在创建producer实例过程中,将先初始化一个metadata实例,这个metadata保存的是集群的配置信息,如broker的列表topic,partition与broker的映射关系

private KafkaProducer(ProducerConfig config, Serializer<K> keySerializer, Serializer<V> valueSerializer) {
        try {
             ......
             //初始化metadata对象,设置属性metadata.max.age.ms,这个值从producer 的配置文件获取,表示更新meta的时间周期
             this.metadata = new Metadata(retryBackoffMs, config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG)); 
             ......
             //设置初始的broker节点信息,是从配置的bootstrap.servers属性获取
             this.metadata.update(Cluster.bootstrap(addresses), time.milliseconds());

             ......
             String ioThreadName = "kafka-producer-network-thread" + (clientId.length() > 0 ? " | " + clientId : "");
             this.ioThread = new KafkaThread(ioThreadName, this.sender, true);
             this.ioThread.start();
            }
        } catch (Throwable t) {
            // call close methods if internal objects are already constructed
            // this is to prevent resource leak. see KAFKA-2121
            close(0, TimeUnit.MILLISECONDS, true);
            // now propagate the exception
            throw new KafkaException("Failed to construct kafka producer", t);
        }
    }

 

同时将启动一个sender IO线程,在这个线程中将真正建立从client到broker的连接,从broker获取metadata 信息及当发送的数据在缓存中达到阈值时,从accumulator中获取消息并发送给broker。NetworkClient是kafka客户端的网络接口层,实现了接口KafkaClient,封装了Java NIO对网络的调用,函数initiateConnect进行初始化连接,所连接的broker 节点由函数leastLoadedNode确定

public class NetworkClient implements KafkaClient {
    /**
     * Initiate a connection to the given node
     */
    private void initiateConnect(Node node, long now) {
        String nodeConnectionId = node.idString();
        try {
            log.debug("Initiating connection to node {} at {}:{}.", node.id(), node.host(), node.port());
            this.connectionStates.connecting(nodeConnectionId, now);
            selector.connect(nodeConnectionId,
                             new InetSocketAddress(node.host(), node.port()),
                             this.socketSendBuffer,
                             this.socketReceiveBuffer);
        } catch (IOException e) {
            /* attempt failed, we'll try again after the backoff */
            connectionStates.disconnected(nodeConnectionId, now);
            /* maybe the problem is our metadata, update it */
            metadataUpdater.requestUpdate();
            log.debug("Error connecting to node {} at {}:{}:", node.id(), node.host(), node.port(), e);
        }
    }
}

在wireshark中可以看到建立连接的TCP 3次握手过程

java检测kafka连接状态 查看kafka的连接数_TCP_05

 

3:metadata的获取更新

建立好连接后,sender线程中调用KafkaClient 的poll来对socket进行实际的读写操作,在poll函数中首先调用metadataUpdater.maybeUpdate(now)来判断是否需要更新metadata,

{Class NetworkClient}

//do actual reads and writes to sockets
public List<ClientResponse> poll(long timeout, long now) {
        long metadataTimeout = metadataUpdater.maybeUpdate(now); //判断是否需要更新metadata
        try {
            this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
        } catch (IOException e) {
            log.error("Unexpected error during I/O", e);
        }
        ......
}

如果canSendRequest返回true,则调用dosend发送请求到某个broker node获取metadata,其实dosend只是把获取metadata的request放到队列中,由selector.poll从队列中获取数据并实际发送请求到broker

{Class DefaultMetadataUpdater}

         public long maybeUpdate(long now) {
            ......
            if (metadataTimeout == 0) {
                // Beware that the behavior of this method and the computation of timeouts for poll() are
                // highly dependent on the behavior of leastLoadedNode.
                Node node = leastLoadedNode(now);
                maybeUpdate(now, node);
            }

            return metadataTimeout;
        }


        private void maybeUpdate(long now, Node node) {
            if (node == null) {
                log.debug("Give up sending metadata request since no node is available");
                // mark the timestamp for no node available to connect
                this.lastNoNodeAvailableMs = now;
                return;
            }
            String nodeConnectionId = node.idString();

            if (canSendRequest(nodeConnectionId)) {
                this.metadataFetchInProgress = true;
                MetadataRequest metadataRequest;
                if (metadata.needMetadataForAllTopics())
                    metadataRequest = MetadataRequest.allTopics();
                else
                    metadataRequest = new MetadataRequest(new ArrayList<>(metadata.topics()));
                ClientRequest clientRequest = request(now, nodeConnectionId, metadataRequest);
                log.debug("Sending metadata request {} to node {}", metadataRequest, node.id());
                doSend(clientRequest, now); //发送请求到某个broker node,使用下面initiateConnect建立的与此node的长连接
            } else if (connectionStates.canConnect(nodeConnectionId, now)) {
                // we don't have a connection to this node right now, make one
                log.debug("Initialize connection to node {} for sending metadata request", node.id());
                initiateConnect(node, now);//建立到node的长连接
            } else { // connected, but can't send more OR connecting
                // In either case, we just need to wait for a network event to let us know the selected
                // connection might be usable again.
                this.lastNoNodeAvailableMs = now;
            }
        }

在wireshark中,可以看到从broker获取metadata的Request / Response 过程,从broker node返回的是所有的broker 列表。

java检测kafka连接状态 查看kafka的连接数_java检测kafka连接状态_06

 

4:producer 发送数据

当用户调用下面方法发送数据时

producer.send(producerRecord, new ProducerCallBack(requestId))

其实是将数据保存在accumulator中的,在doSend方法中会先确定是否有metadata信息,如果有metadata,则对数据做key及value的序列化,然后将数据append到accumulator中便返回

{Class KafkaProducer}

private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
        TopicPartition tp = null;
        try {
            // first make sure the metadata for the topic is available
            long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs);
            long remainingWaitMs = Math.max(0, this.maxBlockTimeMs - waitedOnMetadataMs);
            byte[] serializedKey;
            ......
            serializedKey = keySerializer.serialize(record.topic(), record.key()); //key 序列化
byte[] serializedValue;
            ......
            serializedValue = valueSerializer.serialize(record.topic(), record.value()); //value 序列化
int partition = partition(record, serializedKey, serializedValue, metadata.fetch());
            int serializedSize = Records.LOG_OVERHEAD + Record.recordSize(serializedKey, serializedValue);
            
            ......

            RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey, serializedValue, interceptCallback, remainingWaitMs);
return result.future;
 
            ......
    }

在sender线程中,将从accumulator中获取数据,并发送到相应的broker node

java检测kafka连接状态 查看kafka的连接数_TCP_07

 

从上面的网络连接可以看到有2次发送请求的过程,Request() 及 Request(Exchange),在TCP的封包中,也可以看到有avro.schema的模式信息

总结:

1:如果配置kerberos认证,则需要到KDC (AS/TGS)进行TCP连接的请求

2:初始情况,根据bootstrap.servers配置的broker列表,建立到每个节点的TCP长连接

3:一个kafka producer实例对应一个sender线程,客户端根据leastLoadedNode返回的节点,向此节点发送获取metadata的更新请求,可以得到全部的brokers,也就是说在bootstrap.server中的节点只是全部节点的一个子集

4:创建producer后,如果立刻发送数据,数据保存在accumulator中,sender线程会读取accumulator,并获取metadata,使用已有连接(如果没有连接则建立TCP连接)发送数据

5:sender线程调用NetworkClient.poll不断的轮询,按metadata.max.age.ms配置的时间周期性的更新metadata,在本文中配置的是"metadata.max.age.ms" -> "300000",故会每300秒更新一次metadata。

6:在创建到某个node的长连接后,如果时间到了上面metadata更新周期,又将创建一个新的长连接,更新metadata后,如果原来那个连接在"connections.max.idle.ms" -> "540000"所配置的默认时间没有使用过,会断开空闲的长连接,一旦断开连接,立刻又请求更新metadata

下图为抓取的从producer客户端到broker的TCP连接的请求过程,仅供参考:

java检测kafka连接状态 查看kafka的连接数_java检测kafka连接状态_08