文章目录

  • 0. 总结表格
  • 相关概念
  • 1. 冒泡排序(Bubble Sort)
  • 算法描述
  • 代码实现
  • 2. 插入排序(Insertion Sort)
  • 算法描述
  • 代码实现
  • 3. 归并排序(Merge Sort)
  • 算法描述
  • 代码实现
  • 4. 快速排序(Quick Sort)
  • 算法描述
  • 代码实现
  • 5. 堆排(Heap Sort)
  • 算法描述
  • 代码实现
  • 6. 希尔排序(Shell Sort)
  • 算法描述
  • 代码实现
  • 7. 选择排序(Selection Sort)
  • 算法描述
  • 代码实现

0. 总结表格

java最常见的算法题 java中常见的算法_代码实现

相关概念

  • 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。(
  • 不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
  • 时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
  • 空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

1. 冒泡排序(Bubble Sort)

  冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。每一趟都是将最大的元素丢到最后

算法描述

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 针对所有的元素重复以上的步骤,除了最后一个;
  • 重复步骤1~3,直到排序完成。

代码实现

public class BubbleSort {
    public static int[] bubbleSort(int[] array) {
        if (array == null || array.length == 0) {
            return null;
        }
        for (int i = 0; i < array.length - 1; i++) {
            //解释一下这里的 j < array.length - 1 - i;
            // 因为在一次排序过后,最大的元素已经位于最后了,因此最后i个元素无需参加之后的排序
            for (int j = 0; j < array.length - 1 - i; j++) {
                if (array[j] > array[j + 1]) {
                    swap(array, j, j + 1);
                }
            }
        }
        return array;
    }

    private static void swap(int[] arr, int i, int i1) {
        int tem = arr[i];
        arr[i] = arr[i1];
        arr[i1] = tem;
    }

    public static void main(String[] args) {
        int[] arr = {5, 3, 7, 2, 6, 9, 4, 8, 1};
        System.out.println("排序前");
        System.out.println(Arrays.toString(arr));
        bubbleSort(arr);
        System.out.println("排序后");
        System.out.println(Arrays.toString(arr));
    }
}

2. 插入排序(Insertion Sort)

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;
  • 重复步骤2~5。

代码实现

public class InsertionSort {
    public static int[] insertionSort(int[] array) {
        if (array == null || array.length == 0) {
            return null;
        }
        int preIndex;
        int current;
        for(int i=1;i<array.length;i++){
            preIndex =i-1;
            current =array[i];
            while(preIndex>=0&&array[preIndex]>current){
                array[preIndex+1]=array[preIndex];
                preIndex--;
            }
            array[preIndex+1]=current;
        }
        return array;
    }

    public static void main(String[] args) {
        int[] arr = {5, 3, 7, 2, 6, 9, 4, 8, 1};
        System.out.println("排序前");
        System.out.println(Arrays.toString(arr));
        insertionSort(arr);
        System.out.println("排序后");
        System.out.println(Arrays.toString(arr));
    }
}

3. 归并排序(Merge Sort)

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

算法描述

  • 把长度为n的输入序列分成两个长度为n/2的子序列;
  • 对这两个子序列分别采用归并排序;
  • 将两个排序好的子序列合并成一个最终的排序序列。

代码实现

public class MergeSort {
    public static int[] sort(int[] a, int low, int high) {
        int mid = (low + high) / 2;
        if (low < high) {
            sort(a, low, mid);
            sort(a, mid + 1, high);
            merge(a, low, mid, high);
        }
        return a;
    }

    public static void merge(int[] a, int low, int mid, int high) {
        if (a == null || a.length == 0) {
            return;
        }

        int[] temp = new int[high - low + 1];
        int k = 0;          //记录temp数组的下标
        int i = low, j = mid + 1;           //定义两个指针,i指向前一半的第一个元素的位置,j指向mid+1的位置
        while (i <= mid && j <= high) {
            if (a[i] < a[j]) {
                temp[k++] = a[i++];
            } else {
                temp[k++] = a[j++];
            }
        }

        while (i <= mid) {
            temp[k++] = a[i++];
        }


        while (j <= high) {
            temp[k++] = a[j++];
        }

        for (int l = 0; l < temp.length; l++) {
            a[low + l] = temp[l];
        }
    }

    public static void main(String[] args) {
        int[] arr = {5, 3, 7, 2, 6, 9, 4, 8, 1};
        System.out.println("排序前");
        System.out.println(Arrays.toString(arr));
        sort(arr,0,arr.length-1);
        System.out.println("排序后");
        System.out.println(Arrays.toString(arr));
    }
}

4. 快速排序(Quick Sort)

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

算法描述

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

代码实现

public class QuickSort {

    /**
     * 注:快排的原则就是认为基准点之前的元素都比他小,基准点之后的元素都比他大
     *     升序排序中递归的条件是左指针要小于等于右指针
     * @param nums
     * @param left
     * @param right
     */
    public static void sort(int nums[], int left, int right) {
        if(left<right){
            int i =left;
            int j=right;
            int base =nums[i];
            while(i<j){
                while(i<j && nums[j]>base){
                    j--;
                }
                if(i<j){
                    nums[i]=nums[j];
                    i++;
                }
                while(i<j && nums[i]<base){
                    i++;
                }
                if(i<j){
                    nums[j]=nums[i];
                    j--;
                }
            }
            nums[i]=base;
            sort(nums,0,i-1);
            sort(nums,i+1,right);
        }
    }
    public static void main(String[] args) {
        int nums[] = {20, 30, 90, 40, 70, 110, 60, 10, 100, 50, 80};
        System.out.println("排序前");
        System.out.println(Arrays.toString(nums));
        sort(nums,0,nums.length-1);
        System.out.println("排序后");
        System.out.println(Arrays.toString(nums));
    }
}

5. 堆排(Heap Sort)

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

算法描述

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

代码实现

public class MaxHeap {
    /**
     * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
     * 其中,N为数组下标索引值,如数组中第1个数对应的N为0。
     *
     * @param nums  数组
     * @param start 调整的起始位置,建堆的时候是中间开始,排序的时候是从头开始
     * @param end   截至范围(一般为数组中最后一个元素的索引)
     */
    public static void fixHeap(int[] nums, int start, int end) {
        int cur = start;
        int left = cur * 2 + 1;

        while (left <= end) {
            //这三个判断其实就是在维护三个数字那颗最小树
            //条件是为了避免越界风险
            if (left < end && nums[left] < nums[left + 1]) {
                left++;//比较大小取大的
            }
            //这里值比较了一次,是因为后面的值已经在树上了
            if (nums[cur] > nums[left]) {
                break;//调整结束
            } else {
                int temp = nums[cur];
                //交换位置
                nums[cur] = nums[left];
                nums[left] = temp;
            }
            //更新节点
            cur = left;
            left = left * 2 + 1;
        }
    }

    public static void creatHeap(int[] nums) {
        int n = nums.length;
        //建堆的时候从中间开始
        // 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
        for (int i = (n - 1) / 2; i >= 0; i--) {
            fixHeap(nums, i, n - 1);
        }
    }

    public static void sortHeap(int[] nums) {
        //由于是大顶堆,堆顶(数组第一个元素)是最大的
        //因此升序排列的时候,每次将堆顶取出来放在最后,然后维护这个堆
        for (int i = nums.length - 1; i >= 0; i--) {
            int temp = nums[0];
            nums[0] = nums[i];
            nums[i] = temp;
            // 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
            // 即,保证a[i-1]是a[0...i-1]中的最大值。

            fixHeap(nums, 0, i - 1);
        }
    }

    public static void main(String[] args) {

        int nums[] = {20, 30, 90, 40, 70, 110, 60, 10, 100, 50, 80};
        System.out.println("建堆");
        creatHeap(nums);
        System.out.println(Arrays.toString(nums));
        System.out.println("堆排");
        sortHeap(nums);
        System.out.println(Arrays.toString(nums));
    }
}

6. 希尔排序(Shell Sort)

1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

算法描述

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列个数k,对序列进行k 趟排序;
  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

代码实现

public class ShellSort {
    public static int[] shellSort(int[] array) {

        int current, index, j;

        if (array == null || array.length == 0) {
            return null;
        }

        for (int gap = array.length / 2; gap > 0; gap = gap / 2) {      //选取gap,采用推荐的默认/2取gap的方式
            for (int i = gap; i < array.length; i++) {        //需要排序的组数
                //接下来采用插入排序对每个组进行排序
                current = array[i];     //取出当前元素,避免前组中前一个元素后移导致此元素被覆盖
                j = i - gap;            //取得这个组中的前一个元素的位置
                while (j >= 0 && array[j] > current) {
                    array[j + gap] = array[j];        //元素后移,注意移动的个数为gap,第一次编程写错了array[j + 1] = array[j];
                    j -= gap;                       //j继续往前寻找组中前面的元素
                }
                array[j + gap] = current;             //j+gpa即为array[i]该移动的位置
            }
        }

        return array;
    }


    public static void main(String[] args) {
        int[] arr = {5, 3, 7, 2, 6, 9, 4, 8, 1};
        System.out.println("排序前");
        System.out.println(Arrays.toString(arr));
        shellSort(arr);
        System.out.println("排序后");
        System.out.println(Arrays.toString(arr));
    }
}

7. 选择排序(Selection Sort)

  选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
一直找最小(大)的。

算法描述

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

  • 初始状态:无序区为R[1…n],有序区为空;
  • 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
  • n-1趟结束,数组有序化了。

java最常见的算法题 java中常见的算法_代码实现_02

代码实现

public class SelectionSort {
    public static int[] selectionSort(int[] array) {
        if (array == null || array.length == 0) {
            return null;
        }
        for (int i = 0; i < array.length - 1; i++) {      //需要比较的次数,数组长度减一次
            //先假设每次循环时,最小(大)数的索引为i
            int minIndex = i;
            //每一个元素都和剩下的未排序的元素比较
            for (int j = i + 1; j < array.length; j++) {
                if (array[minIndex] > array[j]) minIndex = j;      //第一次写代码犯错:每比较一次,就交换一次,这样显然没有记录最小值的索引然后在最后交换一次的好
            }                                                      //第二次写代码犯错:这里应该是array[minIndex] > array[j]比较,而不是array[i] > array[j]比较

            //进过一轮循环,即可找出第一个最值的索引,然后把最值放到i的位置
            swap(array, i, minIndex);

        }
        return array;
    }

    private static void swap(int[] arr, int i, int i1) {
        int tem = arr[i];
        arr[i] = arr[i1];
        arr[i1] = tem;
    }

    public static void main(String[] args) {
        int[] arr = {5, 3, 7, 2, 6, 9, 4, 8, 1};
        System.out.println("排序前");
        System.out.println(Arrays.toString(arr));
        selectionSort(arr);
        System.out.println("排序后");
        System.out.println(Arrays.toString(arr));
    }
}