前言
- 如何在anconda创建mmdetection虚拟环境和用pycham为项目配置环境见(linux)mmdetection环境配置gpu+anaconda+pycham+ RTX2080ti 笔记
- mmdetection链接 https://github.com/open-mmlab/mmdetection或mirrors / open-mmlab / mmdetection · GitCode
- voc转coco参考记录一下:DETR训练自制VOC转COCO数据集的过程
数据集准备
在mmdetection文件夹下新建data文件夹,需要coco数据集格式如下(test测试集可有可无)
coco数据集位置格式
mmdetection
├── data
├── coco: 数据集根目录
├── train2017
├── val2017
├── test2017
└── annotations: 对应标注文件夹
├── instances_train2017.json
├── instances_val2017.json
└── instances_test2017.json
voc转coco
1.先创建instances_train2017.json,instances_val2017.json和instances_test2017.json空文本。可通过新建txt文件再重命名修改文件扩展名创建json格式文本
2.根据对应的txt文件将xml标注文件转json,需要修改PRE_DEFINE_CATEGORIES和数据集路径
# 根据对应的txt文件将xml标注文件转json
import sys
import os
import json
import xml.etree.ElementTree as ET
START_BOUNDING_BOX_ID = 1
PRE_DEFINE_CATEGORIES = {"person":1, "elephant":2, "lion":3, "giraffe":4} #修改的地方,修改为自己的类别
def get(root, name):
vars = root.findall(name)
return vars
def get_and_check(root, name, length):
vars = root.findall(name)
if len(vars) == 0:
raise NotImplementedError('Can not find %s in %s.' % (name, root.tag))
if length > 0 and len(vars) != length:
raise NotImplementedError('The size of %s is supposed to be %d, but is %d.' % (name, length, len(vars)))
if length == 1:
vars = vars[0]
return vars
def get_filename_as_int(filename):
try:
filename = os.path.splitext(filename)[0]
return int(filename)
except:
raise NotImplementedError('Filename %s is supposed to be an integer.' % (filename))
def convert(xml_list, xml_dir, json_file):
list_fp = open(xml_list, 'r')
json_dict = {"images": [], "type": "instances", "annotations": [],
"categories": []}
categories = PRE_DEFINE_CATEGORIES
bnd_id = START_BOUNDING_BOX_ID
for line in list_fp:
line = line.strip()
line = line + ".xml"
print("Processing %s" % (line))
xml_f = os.path.join(xml_dir, line)
tree = ET.parse(xml_f)
root = tree.getroot()
path = get(root, 'path')
if len(path) == 1:
filename = os.path.basename(path[0].text)
elif len(path) == 0:
filename = get_and_check(root, 'filename', 1).text
else:
raise NotImplementedError('%d paths found in %s' % (len(path), line))
## The filename must be a number
image_id = get_filename_as_int(filename)
size = get_and_check(root, 'size', 1)
width = int(get_and_check(size, 'width', 1).text)
height = int(get_and_check(size, 'height', 1).text)
image = {'file_name': filename, 'height': height, 'width': width,
'id': image_id}
json_dict['images'].append(image)
## Cruuently we do not support segmentation
# segmented = get_and_check(root, 'segmented', 1).text
# assert segmented == '0'
for obj in get(root, 'object'):
category = get_and_check(obj, 'name', 1).text
if category not in categories:
new_id = len(categories)
categories[category] = new_id
category_id = categories[category]
bndbox = get_and_check(obj, 'bndbox', 1)
xmin = int(get_and_check(bndbox, 'xmin', 1).text)
ymin = int(get_and_check(bndbox, 'ymin', 1).text)
xmax = int(get_and_check(bndbox, 'xmax', 1).text)
ymax = int(get_and_check(bndbox, 'ymax', 1).text)
assert (xmax > xmin+2)
assert (ymax > ymin+2)
o_width = abs(xmax - xmin)
o_height = abs(ymax - ymin)
ann = {'area': o_width * o_height, 'iscrowd': 0, 'image_id':
image_id, 'bbox': [xmin, ymin, o_width, o_height],
'category_id': category_id, 'id': bnd_id, 'ignore': 0,
'segmentation': []}
json_dict['annotations'].append(ann)
bnd_id = bnd_id + 1
for cate, cid in categories.items():
cat = {'supercategory': 'none', 'id': cid, 'name': cate}
json_dict['categories'].append(cat)
json_fp = open(json_file, 'w')
json_str = json.dumps(json_dict)
json_fp.write(json_str)
json_fp.close()
list_fp.close()
if __name__ == '__main__':
# xml_list为xml文件存放的txt文件名 xml_dir为真实xml的存放路径 json_file为存放的json路径
xml_list = '你的数据集路径/code/datasets/BIRDSAI/cocoBIRDSAI/ImageSets/Main/train.txt'
xml_dir = '你的数据集路径/code/datasets/BIRDSAI/cocoBIRDSAI/Annotations/'
json_dir = '你的数据集路径/annotations/instances_trainl2017.json' # 注意!!!这里instances_trainl2017.json先要自己创建
convert(xml_list, xml_dir, json_dir)
3. 根据对应的txt文件将jpg图像文件转移到对应文件夹,需要新建train2017,val2017和test2017文件夹
#根据txt名称列表文件转移图像等数据文件
import shutil
file = open('你的数据集路径/ImageSets/Main/train.txt', 'r')
number_list = file.readlines()
for i in range(len(number_list)):
number_list[i] = number_list[i].strip()
print(number_list)
src_path = '你的数据集路径/JPEGImages/'#图像路径
target_path = '你的数据集路径/train2017/'
while True:
try:
for number in number_list:
shutil.move(src_path + number + '.jpg', target_path + number + '.jpg') # 文件名
except:
break
数据集训练与测试
1. 如果你划分了测试集,并且想使用测试集,需要修改以下三个文件
configs/_base_/datasets文件夹下的coco_detection.py、coco_instance.py和coco_instance_semantic.py最后几行
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
改为
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_test2017.json',
img_prefix=data_root + 'test2017/',
2. 如果你的显卡不是很好,更改训练时图像尺寸以提高训练速度
configs/_base_/datasets文件夹下的coco_detection.py、coco_instance.py和coco_instance_semantic.py中
所有的img_scale=(1333, 800)--> img_scale=(600, 400)#根据自己需要修改大小
3. 修改目标类别class_names.py和coco.py文件
mmdet/core/evaluation/class_names.py文件
def coco_classes():
return [
'person', 'elephant', 'lion', 'giraffe'
]#你自己的目标类别mmdet/datasets/coco.py文件
class CocoDataset(CustomDataset):
CLASSES = ('person', 'elephant', 'lion', 'giraffe')#你自己的目标类别
4.修改目标类别数量 num_class=
configs/_base_/models/faster_rcnn_r50_fpn.py文件
num_classes=80-->num_classes=4
5. 训练参数修改,主要是configs/_base_/schedules/schedule_1x.py文件
学习率lr 最大迭代数量max_epochs,根据需要修改
6. 修改完成后最好重新编译python setup.py develop再运行
7.训练指令
多GPU bash ./tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py 2 (2是GPU数量根据你自己的显卡数修改)
单GPU python tools/train.py configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
8. 训练完成后数据存放在work_dirs/faster_rcnn_r50_fpn_1x_coco/文件夹中
latest.pth文件为最终的网络模型,faster_rcnn_r50_fpn_1x_coco.py为模型和数据集参数文件。用于接下来的测试集测试
9. 测试评估
多GPU ./tools/dist_test.sh ./work_dirs/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco.py ./work_dirs/faster_rcnn_r50_fpn_1x_coco/latest.pth 2 --eval bbox --options "classwise=True"
单GPUpython tools/test.py ./work_dirs/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco.py ./work_dirs/faster_rcnn_r50_fpn_1x_coco/latest.pth --eval bbox --options "classwise=True" --eval bbox表示评估mAP
--options "classwise=True"表示评估每个类别的AP