一、前言
本篇文章适合人脸识别初学者。小总结篇。
环境:
- Python 3.3+ or Python 2.7
- macOS or Linux (Windows这个库说是不支持的,但是应该也有办法)
下面是这个库的github地址 face_recognition 基于opencv的人脸实时识别&&face_recognition库进行本地人脸识别
对视频中的人脸抓取并匹配照片
安装 face_recognition
pip install face_recognition
二、需求
我们要做的需求就是,要求能够实时进行人脸识别,然后并截图到本地(这里我本来是想做根据人的识别结果进行截图的,但是没整成功,后面再研究一下,或者大家有思路也留言学习下hh)
三、代码
# -*- coding: utf-8 -*-
import face_recognition
import cv2
import numpy as np
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
cap = cv2.VideoCapture(0)
i=0
# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("dataset/me.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("dataset/catch.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"trump",
"wuyuhui"
]
# Initialize some variables 初始化
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video 抓取一帧视频
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing 将视频帧的大小调整为1/4以加快人脸识别处理
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# 将图像从BGR颜色(OpenCV使用)转换为RGB颜色(人脸识别使用)
rgb_small_frame = small_frame[:, :, ::-1]
# 仅每隔一帧处理一次视频以节省时间
if process_this_frame:
# 查找当前视频帧中的所有面和面编码
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# 查看该面是否与已知面匹配
matches = face_recognition.compare_faces(known_face_encodings, face_encoding,tolerance=0.4)
name = "Unknown"
# # 如果在已知的面编码中找到匹配项,请使用第一个。
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# 或者,使用与新面的距离最小的已知面
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
print face_distances
# if face_distances[best_match_index]<=0.45:
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
#抓拍
if False in matches:
ret, frame = cap.read()
cv2.imshow('capture', frame)
cv2.imwrite(r"/Users/sue/desktop/picture/p" + str(i) + ".jpg", frame)
i = i + 1
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
四、修改部分
1、把需要匹配的图片放在这里
2、因为这个库对亚洲人和小孩的识别度不高,所以可以通过改变tolerance=0.4
它的参数值来提高准确度。
3、截图部分
把路径改一下,然后就可以在文件夹里看见截图了,但是这个还需要改善。
五、运行结果
哦这个照片…因为我放的是obama照片,所以不一样哈,所以是unknown.大家放自己的照片会有名字的~
截图:
这个库还蛮好用的,行了去看论文了,这个还是不可以满足我的需求T_T
希望有帮助到需要的人8