在上一节中,介绍了 RRT 算法的原理,这一节将一步步实现 RRT 路径规划算法在二维环境中的路径规划,来进一步加深对 RRT 算法的理解。
二维环境的搭建
我们将搭建下图所示的二维环境,绿色点为起点(0,0),红色点为目标点(15, 12),黑色的圆表示障碍物。
实现上述环境的代码如下:
start = [0, 0] # 起点
goal = [15, 12] # 终点
# 障碍物 (x, y, radiu)
obstacle_list = [
(3, 3, 1.5),
(12, 2, 3),
(3, 9, 2),
(9, 11, 2)
]
plt.axis([-2, 18, -2, 15])
for (ox, oy, size) in obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(start[0], start[1], "og")
plt.plot(goal[0], goal[1], "or")
plt.show()
plt.pause(0.01)
RRT 路径规划算法
- 算法初始化
class RRT:
# 初始化
def __init__(self,
obstacle_list, # 障碍物
rand_area, # 采样的区域
expand_dis=2.0, # 步长
goal_sample_rate=10, # 目标采样率
max_iter=200): # 最大迭代次数
self.start = None
self.goal = None
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.expand_dis = expand_dis
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.node_list = None
- 路径规划
- 将起点和终点结点化,方便计算该结点到起点的路径距离以及后面的路径回溯。
def rrt_planning(self, start, goal, animation=True):
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.node_list[self.start]
path = None
结点化的代码如下:
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.cost = 0.0
self.parent = None
- 开始在环境中循环采样点,在此有一个小的采样技巧,为了使 RRT 树能朝着目标点的方向生长,在采样时,以一定的概率采样目标点。
rnd = self.sample() # 在环境中随机采样点
采样函数如下:
def sample(self):
if random.randint(0, 100) > self.goal_sample_rate:
rnd = [random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand)]
else:
rnd = [self.goal.x, self.goal.y]
return rnd
- 从结点树中找到距离采样点最近的结点。
n_ind = self.get_nearest_list_index(self.node_list, rnd)
nearest_node = self.node_list[n_ind]
def get_nearest_list_index(nodes, rnd):
""" 计算树中距离采样点距离最近的结点 """
d_list = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2
for node in nodes]
min_index = d_list.index(min(d_list))
return min_index
- 生成新的下一个结点。在找到树中距离采样点最近的结点后,可以计算两个结点的连线和水平的方向的角度,再根据步长的大小,即可计算出下一个树结点的位置。
theta = math.atan2(rnd[1] - nearest_node.y, rnd[0] - nearest_node.x)
new_node = self.get_new_node(theta, n_ind, nearest_node)
def get_new_node(self, theta, n_ind, nearest_node):
""" 计算新结点 """
new_node = copy.deepcopy(nearest_node)
new_node.x += self.expand_dis * math.cos(theta)
new_node.y += self.expand_dis * math.sin(theta)
new_node.cost += self.expand_dis
new_node.parent = n_ind
return new_node
- 检测碰撞。检测新生成的结点的路径是否会与障碍物碰撞
no_collision = self.check_segment_collision(new_node.x, new_node.y, nearest_node.x, nearest_node.y)
其中检测碰撞的函数如下:
def check_segment_collision(self, x1, y1, x2, y2):
for (ox, oy, radius) in self.obstacle_list:
dd = self.distance_squared_point_to_segment(
np.array([x1, y1]),
np.array([x2, y2]),
np.array([ox, oy])
)
if dd <= radius ** 2:
return False
return True
其中 distance_squared_point_to_segment()
函数的功能为:求点到线段的最短距离,代码如下:
def distance_squared_point_to_segment(v, w, p):
""" 计算线段 vw 和 点 p 之间的最短距离"""
if np.array_equal(v, w): # 点 v 和 点 w 重合的情况
return (p - v).dot(p - v)
l2 = (w - v).dot(w - v) # 线段 vw 长度的平方
t = max(0, min(1, (p - v).dot(w - v) / l2))
projection = v + t * (w - v)
return (p - projection).dot(p - projection)
- 如果没有与障碍物发生碰撞,则将新结点加入到树中,并绘制新结点以及生长的新枝干。再判断新结点是否是目标点的邻接结点。
if no_collision:
self.node_list.append(new_node)
# 一步一绘制
if animation:
self.draw_graph(new_node, path)
# 判断新结点是否临近目标点
if self.is_near_goal(new_node):
if self.check_segment_collision(new_node.x, new_node.y,
self.goal.x, self.goal.y):
last_index = len(self.node_list) - 1
path = self.get_final_course(last_index) # 回溯路径
path_length = self.get_path_len(path) # 计算路径的长度
print("当前的路径长度为:{}".format(path_length))
if animation:
self.draw_graph(new_node, path)
return path
其中,is_near_goal()
是判断新结点是否邻近目标点的函数,其代码如下:
def is_near_goal(self, node):
d = self.line_cost(node, self.goal)
if d < self.expand_dis:
return True
return False
line_cost()
函数是如果新生成的结点邻近目标结点的情况下,该结点到目标结点之间的距离。其代码如下:
def line_cost(node1, node2):
return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)
get_final_course()
是获取最终从起点到终点的路径的函数。其代码如下:
def get_final_course(self, last_index):
""" 回溯路径 """
path = [[self.goal.x, self.goal.y]]
while self.node_list[last_index].parent is not None:
node = self.node_list[last_index]
path.append([node.x, node.y])
last_index = node.parent
path.append([self.start.x, self.start.y])
return path
get_path_len()
是求取路径的总长度的函数,其代码如下:
def get_path_len(path):
""" 计算路径的长度 """
path_length = 0
for i in range(1, len(path)):
node1_x = path[i][0]
node1_y = path[i][1]
node2_x = path[i - 1][0]
node2_y = path[i - 1][1]
path_length += math.sqrt((node1_x - node2_x) ** 2 + (node1_y - node2_y) ** 2)
return path_length
draw_graph()
为绘制地图以及结点路径等函数,使之可视化。其代码如下:
def draw_graph(self, rnd=None, path=None):
plt.clf()
# 绘制新的结点
if rnd is not None:
plt.plot(rnd.x, rnd.y, '^k')
# 绘制路径
for node in self.node_list:
if node.parent is not None:
if node.x or node.y is not None:
plt.plot([node.x, self.node_list[node.parent].x],
[node.y, self.node_list[node.parent].y],
'-g')
# 绘制障碍物
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
# 绘制起点、终点
plt.plot(self.start.x, self.start.y, "og")
plt.plot(self.goal.x, self.goal.y, "or")
# 绘制路径
if path is not None:
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
# 绘制图的设置
plt.axis([-2, 18, -2, 15])
plt.grid(True)
plt.pause(0.01)
最终运行结果如下:
完整代码如下:
import random
import math
import copy
import time
import matplotlib.pyplot as plt
import numpy as np
class RRT:
# 初始化
def __init__(self,
obstacle_list, # 障碍物
rand_area, # 采样的区域
expand_dis=2.0, # 步长
goal_sample_rate=10, # 目标采样率
max_iter=200): # 最大迭代次数
self.start = None
self.goal = None
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.expand_dis = expand_dis
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.node_list = None
def rrt_planning(self, start, goal, animation=True):
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.node_list = [self.start]
path = None
for i in range(self.max_iter):
# 1. 在环境中随机采样点
rnd = self.sample()
# 2. 找到结点树中距离采样点最近的结点
n_ind = self.get_nearest_list_index(self.node_list, rnd)
nearest_node = self.node_list[n_ind]
# 3. 在采样点的方向生长一个步长,得到下一个树的结点。
theta = math.atan2(rnd[1] - nearest_node.y, rnd[0] - nearest_node.x)
new_node = self.get_new_node(theta, n_ind, nearest_node)
# 4. 检测碰撞,检测到新生成的结点的路径是否会与障碍物碰撞
no_collision = self.check_segment_collision(new_node.x, new_node.y, nearest_node.x, nearest_node.y)
if no_collision:
self.node_list.append(new_node)
# 一步一绘制
if animation:
time.sleep(1)
self.draw_graph(new_node, path)
# 判断新结点是否临近目标点
if self.is_near_goal(new_node):
if self.check_segment_collision(new_node.x, new_node.y,
self.goal.x, self.goal.y):
last_index = len(self.node_list) - 1
path = self.get_final_course(last_index) # 回溯路径
path_length = self.get_path_len(path) # 计算路径的长度
print("当前的路径长度为:{}".format(path_length))
if animation:
self.draw_graph(new_node, path)
return path
def sample(self):
""" 在环境中采样点的函数,以一定的概率采样目标点 """
if random.randint(0, 100) > self.goal_sample_rate:
rnd = [random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand)]
else:
rnd = [self.goal.x, self.goal.y]
return rnd
@staticmethod
def get_nearest_list_index(nodes, rnd):
""" 计算树中距离采样点距离最近的结点 """
d_list = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2
for node in nodes]
min_index = d_list.index(min(d_list))
return min_index
def get_new_node(self, theta, n_ind, nearest_node):
""" 计算新结点 """
new_node = copy.deepcopy(nearest_node)
new_node.x += self.expand_dis * math.cos(theta)
new_node.y += self.expand_dis * math.sin(theta)
new_node.cost += self.expand_dis
new_node.parent = n_ind
return new_node
def check_segment_collision(self, x1, y1, x2, y2):
""" 检测碰撞 """
for (ox, oy, radius) in self.obstacle_list:
dd = self.distance_squared_point_to_segment(
np.array([x1, y1]),
np.array([x2, y2]),
np.array([ox, oy])
)
if dd <= radius ** 2:
return False
return True
@staticmethod
def distance_squared_point_to_segment(v, w, p):
""" 计算线段 vw 和 点 p 之间的最短距离"""
if np.array_equal(v, w): # 点 v 和 点 w 重合的情况
return (p - v).dot(p - v)
l2 = (w - v).dot(w - v) # 线段 vw 长度的平方
t = max(0, min(1, (p - v).dot(w - v) / l2))
projection = v + t * (w - v)
return (p - projection).dot(p - projection)
def draw_graph(self, rnd=None, path=None):
plt.clf()
# 绘制新的结点
if rnd is not None:
plt.plot(rnd.x, rnd.y, '^k')
# 绘制路径
for node in self.node_list:
if node.parent is not None:
if node.x or node.y is not None:
plt.plot([node.x, self.node_list[node.parent].x],
[node.y, self.node_list[node.parent].y],
'-g')
# 绘制起点、终点
plt.plot(self.start.x, self.start.y, "og")
plt.plot(self.goal.x, self.goal.y, "or")
# 绘制障碍物
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
# 绘制路径
if path is not None:
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
# 绘制图的设置
plt.axis([-2, 18, -2, 15])
plt.grid(True)
plt.pause(0.01)
def is_near_goal(self, node):
d = self.line_cost(node, self.goal)
if d < self.expand_dis:
return True
return False
@staticmethod
def line_cost(node1, node2):
return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)
def get_final_course(self, last_index):
""" 回溯路径 """
path = [[self.goal.x, self.goal.y]]
while self.node_list[last_index].parent is not None:
node = self.node_list[last_index]
path.append([node.x, node.y])
last_index = node.parent
path.append([self.start.x, self.start.y])
return path
@staticmethod
def get_path_len(path):
""" 计算路径的长度 """
path_length = 0
for i in range(1, len(path)):
node1_x = path[i][0]
node1_y = path[i][1]
node2_x = path[i - 1][0]
node2_y = path[i - 1][1]
path_length += math.sqrt((node1_x - node2_x) ** 2 + (node1_y - node2_y) ** 2)
return path_length
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.cost = 0.0
self.parent = None
def main():
print('Start RRT planning!')
show_animation = True
start = [0, 0]
goal = [15, 12]
# 障碍物 (x, y, radius)
obstacle_list = [
(3, 3, 1.5),
(12, 2, 3),
(3, 9, 2),
(9, 11, 2)
]
rrt = RRT(rand_area=[-2, 18], obstacle_list=obstacle_list, max_iter=200)
path = rrt.rrt_planning(start=[0, 0], goal=[15, 12], animation=show_animation)
print('Done!')
if show_animation and path:
plt.show()
if __name__ == '__main__':
main()