在上一节中,介绍了 RRT 算法的原理,这一节将一步步实现 RRT 路径规划算法在二维环境中的路径规划,来进一步加深对 RRT 算法的理解。

二维环境的搭建

我们将搭建下图所示的二维环境,绿色点为起点(0,0),红色点为目标点(15, 12),黑色的圆表示障碍物。

python 路径规划算法 python路径规划仿真_路径规划

实现上述环境的代码如下:

start = [0, 0]      # 起点
goal = [15, 12]     # 终点

# 障碍物 (x, y, radiu)
obstacle_list = [
    (3, 3, 1.5),
    (12, 2, 3),
    (3, 9, 2),
    (9, 11, 2)
]
plt.axis([-2, 18, -2, 15])
for (ox, oy, size) in obstacle_list:
    plt.plot(ox, oy, "ok", ms=30 * size)

    plt.plot(start[0], start[1], "og")
    plt.plot(goal[0], goal[1], "or")
plt.show()
plt.pause(0.01)

RRT 路径规划算法

  1. 算法初始化
class RRT:
    
    # 初始化
    def __init__(self, 
                 obstacle_list,         # 障碍物
                 rand_area,             # 采样的区域
                 expand_dis=2.0,        # 步长
                 goal_sample_rate=10,   # 目标采样率
                 max_iter=200):         # 最大迭代次数
       
        self.start = None
        self.goal = None
        self.min_rand = rand_area[0]
        self.max_rand = rand_area[1]
        self.expand_dis = expand_dis
        self.goal_sample_rate = goal_sample_rate
        self.max_iter = max_iter
        self.obstacle_list = obstacle_list
        self.node_list = None
  1. 路径规划
  • 将起点和终点结点化,方便计算该结点到起点的路径距离以及后面的路径回溯。
def rrt_planning(self, start, goal, animation=True):
    self.start = Node(start[0], start[1])
    self.goal = Node(goal[0], goal[1])
    self.node_list[self.start]
    path = None

结点化的代码如下:

class Node:   
    def __init__(self, x, y):
        self.x = x
        self.y = y
        self.cost = 0.0
        self.parent = None
  • 开始在环境中循环采样点,在此有一个小的采样技巧,为了使 RRT 树能朝着目标点的方向生长,在采样时,以一定的概率采样目标点。
rnd = self.sample()             # 在环境中随机采样点

采样函数如下:

def sample(self):
    if random.randint(0, 100) > self.goal_sample_rate:
        rnd = [random.uniform(self.min_rand, self.max_rand), 
               random.uniform(self.min_rand, self.max_rand)]
    else:
        rnd = [self.goal.x, self.goal.y]
    return rnd
  • 从结点树中找到距离采样点最近的结点
n_ind = self.get_nearest_list_index(self.node_list, rnd)
nearest_node = self.node_list[n_ind]
def get_nearest_list_index(nodes, rnd):
    """ 计算树中距离采样点距离最近的结点 """
    d_list = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 
              for node in nodes]
    min_index = d_list.index(min(d_list))
    return min_index
  • 生成新的下一个结点。在找到树中距离采样点最近的结点后,可以计算两个结点的连线和水平的方向的角度,再根据步长的大小,即可计算出下一个树结点的位置。
theta = math.atan2(rnd[1] - nearest_node.y, rnd[0] - nearest_node.x)
new_node = self.get_new_node(theta, n_ind, nearest_node)
def get_new_node(self, theta, n_ind, nearest_node):
    """ 计算新结点 """
    new_node = copy.deepcopy(nearest_node)

    new_node.x += self.expand_dis * math.cos(theta)
    new_node.y += self.expand_dis * math.sin(theta)

    new_node.cost += self.expand_dis
    new_node.parent = n_ind

    return new_node
  • 检测碰撞。检测新生成的结点的路径是否会与障碍物碰撞
no_collision = self.check_segment_collision(new_node.x, new_node.y, nearest_node.x, nearest_node.y)

其中检测碰撞的函数如下:

def check_segment_collision(self, x1, y1, x2, y2):
    for (ox, oy, radius) in self.obstacle_list:
        dd = self.distance_squared_point_to_segment(
            np.array([x1, y1]),
            np.array([x2, y2]),
            np.array([ox, oy])
        )
        if dd <= radius ** 2:
            return False
    return True

其中 distance_squared_point_to_segment()函数的功能为:求点到线段的最短距离,代码如下:

def distance_squared_point_to_segment(v, w, p):
    """ 计算线段 vw 和 点 p 之间的最短距离"""
    if np.array_equal(v, w):    # 点 v 和 点 w 重合的情况
        return (p - v).dot(p - v)

    l2 = (w - v).dot(w - v)     # 线段 vw 长度的平方
    t = max(0, min(1, (p - v).dot(w - v) / l2))
    projection = v + t * (w - v)
    return (p - projection).dot(p - projection)

python 路径规划算法 python路径规划仿真_python_02

  • 如果没有与障碍物发生碰撞,则将新结点加入到树中,并绘制新结点以及生长的新枝干。再判断新结点是否是目标点的邻接结点。
if no_collision:
    self.node_list.append(new_node)

    # 一步一绘制
    if animation:
        self.draw_graph(new_node, path)

    # 判断新结点是否临近目标点
    if self.is_near_goal(new_node):
        if self.check_segment_collision(new_node.x, new_node.y,
                                            self.goal.x, self.goal.y):
            last_index = len(self.node_list) - 1
            path = self.get_final_course(last_index)        # 回溯路径
            path_length = self.get_path_len(path)           # 计算路径的长度
            print("当前的路径长度为:{}".format(path_length))

            if animation:
                self.draw_graph(new_node, path)
            return path

其中,is_near_goal()是判断新结点是否邻近目标点的函数,其代码如下:

def is_near_goal(self, node):
    d = self.line_cost(node, self.goal)
    if d < self.expand_dis:
        return True
    return False

line_cost() 函数是如果新生成的结点邻近目标结点的情况下,该结点到目标结点之间的距离。其代码如下:

def line_cost(node1, node2):
    return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)

get_final_course()是获取最终从起点到终点的路径的函数。其代码如下:

def get_final_course(self, last_index):
    """ 回溯路径 """
    path = [[self.goal.x, self.goal.y]]
    while self.node_list[last_index].parent is not None:
        node = self.node_list[last_index]
        path.append([node.x, node.y])
        last_index = node.parent
    path.append([self.start.x, self.start.y])
    return path

get_path_len()是求取路径的总长度的函数,其代码如下:

def get_path_len(path):
    """ 计算路径的长度 """
    path_length = 0
    for i in range(1, len(path)):
        node1_x = path[i][0]
        node1_y = path[i][1]
        node2_x = path[i - 1][0]
        node2_y = path[i - 1][1]
        path_length += math.sqrt((node1_x - node2_x) ** 2 + (node1_y - node2_y) ** 2)
    return path_length

draw_graph() 为绘制地图以及结点路径等函数,使之可视化。其代码如下:

def draw_graph(self, rnd=None, path=None):
    plt.clf()

    # 绘制新的结点
    if rnd is not None:
        plt.plot(rnd.x, rnd.y, '^k')

    # 绘制路径
    for node in self.node_list:
        if node.parent is not None:
            if node.x or node.y is not None:
                plt.plot([node.x, self.node_list[node.parent].x],
                         [node.y, self.node_list[node.parent].y],
                         '-g')

    # 绘制障碍物
    for (ox, oy, size) in self.obstacle_list:
        plt.plot(ox, oy, "ok", ms=30 * size)

    # 绘制起点、终点
    plt.plot(self.start.x, self.start.y, "og")
    plt.plot(self.goal.x, self.goal.y, "or")

    # 绘制路径
    if path is not None:
        plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')

    # 绘制图的设置
    plt.axis([-2, 18, -2, 15])
    plt.grid(True)
    plt.pause(0.01)

最终运行结果如下:

python 路径规划算法 python路径规划仿真_RRT_03

完整代码如下:

import random
import math
import copy
import time

import matplotlib.pyplot as plt
import numpy as np


class RRT:

    # 初始化
    def __init__(self,
                 obstacle_list,         # 障碍物
                 rand_area,             # 采样的区域
                 expand_dis=2.0,        # 步长
                 goal_sample_rate=10,   # 目标采样率
                 max_iter=200):         # 最大迭代次数

        self.start = None
        self.goal = None
        self.min_rand = rand_area[0]
        self.max_rand = rand_area[1]
        self.expand_dis = expand_dis
        self.goal_sample_rate = goal_sample_rate
        self.max_iter = max_iter
        self.obstacle_list = obstacle_list
        self.node_list = None

    def rrt_planning(self, start, goal, animation=True):
        self.start = Node(start[0], start[1])
        self.goal = Node(goal[0], goal[1])
        self.node_list = [self.start]
        path = None

        for i in range(self.max_iter):
            # 1. 在环境中随机采样点
            rnd = self.sample()

            # 2. 找到结点树中距离采样点最近的结点
            n_ind = self.get_nearest_list_index(self.node_list, rnd)
            nearest_node = self.node_list[n_ind]

            # 3. 在采样点的方向生长一个步长,得到下一个树的结点。
            theta = math.atan2(rnd[1] - nearest_node.y, rnd[0] - nearest_node.x)
            new_node = self.get_new_node(theta, n_ind, nearest_node)

            # 4. 检测碰撞,检测到新生成的结点的路径是否会与障碍物碰撞
            no_collision = self.check_segment_collision(new_node.x, new_node.y, nearest_node.x, nearest_node.y)
            if no_collision:
                self.node_list.append(new_node)

                # 一步一绘制
                if animation:
                    time.sleep(1)
                    self.draw_graph(new_node, path)

                # 判断新结点是否临近目标点
                if self.is_near_goal(new_node):
                    if self.check_segment_collision(new_node.x, new_node.y,
                                                    self.goal.x, self.goal.y):
                        last_index = len(self.node_list) - 1
                        path = self.get_final_course(last_index)        # 回溯路径
                        path_length = self.get_path_len(path)           # 计算路径的长度
                        print("当前的路径长度为:{}".format(path_length))

                        if animation:
                            self.draw_graph(new_node, path)
                        return path

    def sample(self):
        """ 在环境中采样点的函数,以一定的概率采样目标点 """
        if random.randint(0, 100) > self.goal_sample_rate:
            rnd = [random.uniform(self.min_rand, self.max_rand),
                   random.uniform(self.min_rand, self.max_rand)]
        else:
            rnd = [self.goal.x, self.goal.y]
        return rnd

    @staticmethod
    def get_nearest_list_index(nodes, rnd):
        """ 计算树中距离采样点距离最近的结点 """
        d_list = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2
                  for node in nodes]
        min_index = d_list.index(min(d_list))
        return min_index

    def get_new_node(self, theta, n_ind, nearest_node):
        """ 计算新结点 """
        new_node = copy.deepcopy(nearest_node)

        new_node.x += self.expand_dis * math.cos(theta)
        new_node.y += self.expand_dis * math.sin(theta)

        new_node.cost += self.expand_dis
        new_node.parent = n_ind

        return new_node

    def check_segment_collision(self, x1, y1, x2, y2):
        """ 检测碰撞 """
        for (ox, oy, radius) in self.obstacle_list:
            dd = self.distance_squared_point_to_segment(
                np.array([x1, y1]),
                np.array([x2, y2]),
                np.array([ox, oy])
            )
            if dd <= radius ** 2:
                return False
        return True

    @staticmethod
    def distance_squared_point_to_segment(v, w, p):
        """ 计算线段 vw 和 点 p 之间的最短距离"""
        if np.array_equal(v, w):    # 点 v 和 点 w 重合的情况
            return (p - v).dot(p - v)

        l2 = (w - v).dot(w - v)     # 线段 vw 长度的平方
        t = max(0, min(1, (p - v).dot(w - v) / l2))
        projection = v + t * (w - v)
        return (p - projection).dot(p - projection)

    def draw_graph(self, rnd=None, path=None):

        plt.clf()

        # 绘制新的结点
        if rnd is not None:
            plt.plot(rnd.x, rnd.y, '^k')

        # 绘制路径
        for node in self.node_list:
            if node.parent is not None:
                if node.x or node.y is not None:
                    plt.plot([node.x, self.node_list[node.parent].x],
                             [node.y, self.node_list[node.parent].y],
                             '-g')

        # 绘制起点、终点
        plt.plot(self.start.x, self.start.y, "og")
        plt.plot(self.goal.x, self.goal.y, "or")

        # 绘制障碍物
        for (ox, oy, size) in self.obstacle_list:
            plt.plot(ox, oy, "ok", ms=30 * size)

        # 绘制路径
        if path is not None:
            plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')

        # 绘制图的设置
        plt.axis([-2, 18, -2, 15])
        plt.grid(True)
        plt.pause(0.01)

    def is_near_goal(self, node):
        d = self.line_cost(node, self.goal)
        if d < self.expand_dis:
            return True
        return False

    @staticmethod
    def line_cost(node1, node2):
        return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)

    def get_final_course(self, last_index):
        """ 回溯路径 """
        path = [[self.goal.x, self.goal.y]]
        while self.node_list[last_index].parent is not None:
            node = self.node_list[last_index]
            path.append([node.x, node.y])
            last_index = node.parent
        path.append([self.start.x, self.start.y])
        return path

    @staticmethod
    def get_path_len(path):
        """ 计算路径的长度 """
        path_length = 0
        for i in range(1, len(path)):
            node1_x = path[i][0]
            node1_y = path[i][1]
            node2_x = path[i - 1][0]
            node2_y = path[i - 1][1]
            path_length += math.sqrt((node1_x - node2_x) ** 2 + (node1_y - node2_y) ** 2)
        return path_length


class Node:
    def __init__(self, x, y):
        self.x = x
        self.y = y
        self.cost = 0.0
        self.parent = None


def main():

    print('Start RRT planning!')
    show_animation = True
    start = [0, 0]
    goal = [15, 12]
    # 障碍物 (x, y, radius)
    obstacle_list = [
        (3, 3, 1.5),
        (12, 2, 3),
        (3, 9, 2),
        (9, 11, 2)
    ]

    rrt = RRT(rand_area=[-2, 18], obstacle_list=obstacle_list, max_iter=200)
    path = rrt.rrt_planning(start=[0, 0], goal=[15, 12], animation=show_animation)
    print('Done!')
    if show_animation and path:
        plt.show()


if __name__ == '__main__':
    main()