一、Bond模式介绍

Bond的模式主要分7类,我们网口自适应主要使用的是mod=1,主备模式,但是网口名称仍然是bond0。

七种bond模式说明:

第一种模式:mod=0 ,即:(balance-rr) Round-robin policy(平衡抡循环策略)

特点:传输数据包顺序是依次传输(即:第1个包走eth0,下一个包就走eth1….一直循环下去,直到最后一个传输完毕),此模式提供负载平衡和容错能力;但是我们知道如果一个连接或者会话的数据包从不同的接口发出的话,中途再经过不同的链路,在客户端很有可能会出现数据包无序到达的问题,而无序到达的数据包需要重新要求被发送,这样网络的吞吐量就会下降

第二种模式:mod=1,即: (active-backup) Active-backup policy(主-备份策略)

特点:只有一个设备处于活动状态,当一个宕掉另一个马上由备份转换为主设备。mac地址是外部可见得,从外面看来,bond的MAC地址是唯一的,以避免switch(交换机)发生混乱。此模式只提供了容错能力;由此可见此算法的优点是可以提供高网络连接的可用性,但是它的资源利用率较低,只有一个接口处于工作状态,在有 N 个网络接口的情况下,资源利用率为1/N

特点:只有一个设备处于active状态,只有当active的slave的接口down时,才会激活其它slave接口。主备模式下发生一次故障切换,在新激活的slave接口上会发送一个或者多个gratuitous ARP。主salve接口上以及配置在接口上的所有VLAN接口都会发送gratuitous ARP,需要在这些接口上配置了至少一个IP地址。VLAN接口上发送的的gratuitous ARP将会附上适当的VLAN id。

Gratuitous ARP也称为免费ARP,无故ARP。Gratuitous ARP不同于一般的ARP请求,它并非期待得到ip对应的mac地址,而是当主机启动的时候,将发送一个Gratuitous arp请求,即请求自己的ip地址的mac地址。

免费 ARP 数据包有以下 3 个作用:

该类型报文起到一个宣告作用。它以广播的形式将数据包发送出去,不需要得到回应,只为了告诉其他计算机自己的 IP 地址和 MAC 地址。

可用于检测 IP 地址冲突。当一台主机发送了免费 ARP 请求报文后,如果收到了 ARP 响应报文,则说明网络内已经存在使用该 IP 地址的主机。

可用于更新其他主机的 ARP 缓存表。如果该主机更换了网卡,而其他主机的 ARP 缓存表仍然保留着原来的 MAC 地址。这时,可以发送免费的 ARP 数据包。其他主机收到该数据包后,将更新 ARP 缓存表,将原来的 MAC 地址替换为新的 MAC 地址。

当一个远程MAC存在于本地ARP 缓存中,转换远程节点的IP地址为MAC地址可以直接通信。然而,系统在知道一个远程IP,但MAC不在本地ARP缓存中时,是这样来获取远程MAC的:本地主机发送一个Broadcast package,询问各节点是否有对应的IP。回应是唯一的。在回应包中就包含此MAC。在收到返回包后,本地节点就会在本地ARP缓存中记录远程MAC。

第三种模式:mod=2,即:(balance-xor) XOR policy(平衡策略)

特点:基于指定的传输HASH策略传输数据包。缺省的策略是:(源MAC地址 XOR 目标MAC地址) % slave数量。其他的传输策略可以通过xmit_hash_policy选项指定,此模式提供负载平衡和容错能力

第四种模式:mod=3,即:broadcast(广播策略)

特点:在每个slave接口上传输每个数据包,此模式提供了容错能力

第五种模式:mod=4,即:(802.3ad) IEEE 802.3ad Dynamic link aggregation(IEEE 802.3ad 动态链接聚合)

特点:创建一个聚合组,它们共享同样的速率和双工设定。根据802.3ad规范将多个slave工作在同一个激活的聚合体下。

外出流量的slave选举是基于传输hash策略,该策略可以通过xmit_hash_policy选项从缺省的XOR策略改变到其他策略。需要注意的 是,并不是所有的传输策略都是802.3ad适应的,尤其考虑到在802.3ad标准43.2.4章节提及的包乱序问题。不同的实现可能会有不同的适应 性。

必要条件:

条件1:ethtool支持获取每个slave的速率和双工设定

条件2:switch(交换机)支持IEEE 802.3ad Dynamic link aggregation

条件3:大多数switch(交换机)需要经过特定配置才能支持802.3ad模式

第六种模式:mod=5,即:(balance-tlb) Adaptive transmit load balancing(适配器传输负载均衡)

特点:不需要任何特别的switch(交换机)支持的通道bonding。在每个slave上根据当前的负载(根据速度计算)分配外出流量。如果正在接受数据的slave出故障了,另一个slave接管失败的slave的MAC地址。

该模式的必要条件:ethtool支持获取每个slave的速率

第七种模式:mod=6,即:(balance-alb) Adaptive load balancing(适配器适应性负载均衡)

特点:该模式包含了balance-tlb模式,同时加上针对IPV4流量的接收负载均衡(receive load balance, rlb),而且不需要任何switch(交换机)的支持。接收负载均衡是通过ARP协商实现的。bonding驱动截获本机发送的ARP应答,并把源硬件地址改写为bond中某个slave的唯一硬件地址,从而使得不同的对端使用不同的硬件地址进行通信。

来自服务器端的接收流量也会被均衡。当本机发送ARP请求时,bonding驱动把对端的IP信息从ARP包中复制并保存下来。当ARP应答从对端到达 时,bonding驱动把它的硬件地址提取出来,并发起一个ARP应答给bond中的某个slave。使用ARP协商进行负载均衡的一个问题是:每次广播 ARP请求时都会使用bond的硬件地址,因此对端学习到这个硬件地址后,接收流量将会全部流向当前的slave。这个问题可以通过给所有的对端发送更新 (ARP应答)来解决,应答中包含他们独一无二的硬件地址,从而导致流量重新分布。当新的slave加入到bond中时,或者某个未激活的slave重新 激活时,接收流量也要重新分布。接收的负载被顺序地分布(round robin)在bond中最高速的slave上

当某个链路被重新接上,或者一个新的slave加入到bond中,接收流量在所有当前激活的slave中全部重新分配,通过使用指定的MAC地址给每个 client发起ARP应答。下面介绍的updelay参数必须被设置为某个大于等于switch(交换机)转发延时的值,从而保证发往对端的ARP应答 不会被switch(交换机)阻截。

必要条件:

条件1:ethtool支持获取每个slave的速率;

条件2:底层驱动支持设置某个设备的硬件地址,从而使得总是有个slave(curr_active_slave)使用bond的硬件地址,同时保证每个bond 中的slave都有一个唯一的硬件地址。如果curr_active_slave出故障,它的硬件地址将会被新选出来的 curr_active_slave接管

其实mod=6与mod=0的区别:mod=6,先把eth0流量占满,再占eth1,….ethX;而mod=0的话,会发现2个口的流量都很稳定,基本一样的带宽。而mod=6,会发现第一个口流量很高,第2个口只占了小部分流量

二、bond驱动介绍

bond本质上就是内核的驱动,和phy驱动,ncsi驱动都类似。

\drivers\net\bonding  bond_main.c

内核启动时,会注册加载bond驱动

module_init(bonding_init);-> bonding_init(void)

bonding_init函数中,

先绑定方法,res = register_pernet_subsys(&bond_net_ops);

dbforgemysq汉化包 bond汉化_linux

 创建proc文件,在/proc/net目录下,创建sysfs文件,在/sys/class/net目录下。

然后bond_create-> bond_setup 和register_netdevice(bond_dev);注册加载bond驱动,绑定bond_ethtool_ops,bond_netdev_ops等方法。这时候会生成一个默认的mod等于0的bond0网口。

dbforgemysq汉化包 bond汉化_IP_02

三、bond sysfs文件系统参数配置

miimon

指定MII链路监控频率,单位是毫秒(ms)。这将决定驱动检查每个slave链路状态频率

0表示禁止MII链路监控。100可以作为一个很好的初始参考值。下面的use_carrier选项将会影响如果检测链路状态。缺省值为0

mode

指定bonding的策略。缺省是balance-rr (round robin,循环赛)。可选的mode包括:0,1,2,3,4,5,6

primay

指定哪个slave成为主设备(primary device),取值为字符串,如eth0,eth1等。只要指定的设备可用,它将一直是激活的slave。只有在主设备(primary device)断线时才会切换设备。这在希望某个slave设备优先使用的情形下很有用,比如,某个slave设备有更高的吞吐率

注意:  primary选项只对active-backup模式有效

use_carrier

指定miimon是否应使用MII或ETHTOOL ioctl和netif_carrier_ok()来确定链接状态。MII或ETHTOOL ioctl的效率较低,并且在内核中使用了不推荐的调用序列。netif_carrier_ok()依赖于设备驱动程序来保持其状态为netif_carrier_on / off;在撰写本文时,大多数(但不是全部)设备驱动程序都支持此功能。

如果bond链接不是up状态,可能是您的网络设备驱动程序不支持netif_carrier_on / off。netif_carrier的默认状态是“carrier on”,因此如果驱动程序不支持netif_carrier,则看起来好像链接始终处于启用状态。在这种情况下,将use_carrier设置为0,绑定恢复为MII / ETHTOOL ioctl方法以确定链路状态。

值为1允许使用netif_carrier_ok(),值为0将使用已弃用的MII / ETHTOOL ioctls。 默认值为1。