11、Elasticsearch了解多少,说说你们公司es的集群架构,索引数据大小,分片有多少,以及一些调优手段 。

比如:ES集群架构13个节点,索引根据通道不同共20+索引,根据日期,每日递增20+,索引:10分片,每日递增1亿+数据,每个通道每天索引大小控制:150GB之内。
仅索引层面调优手段:

1.1、设计阶段调优
1)根据业务增量需求,采取基于日期模板创建索引,通过roll over API滚动索引;
2)使用别名进行索引管理;
3)每天凌晨定时对索引做force_merge操作,以释放空间;
4)采取冷热分离机制,热数据存储到SSD,提高检索效率;冷数据定期进行shrink操作,以缩减存储;
5)采取curator进行索引的生命周期管理;
6)仅针对需要分词的字段,合理的设置分词器;
7)Mapping阶段充分结合各个字段的属性,是否需要检索、是否需要存储等。 …

1.2、写入调优
1)写入前副本数设置为0;
2)写入前关闭refresh_interval设置为-1,禁用刷新机制;
3)写入过程中:采取bulk批量写入;
4)写入后恢复副本数和刷新间隔;
5)尽量使用自动生成的id。

1.3、查询调优
1)禁用wildcard;
2)禁用批量terms(成百上千的场景);
3)充分利用倒排索引机制,能keyword类型尽量keyword;
4)数据量大时候,可以先基于时间敲定索引再检索;
5)设置合理的路由机制。

1.4、其他调优
部署调优,业务调优等。

12、Elasticsearch 索引数据多了怎么办,如何调优,部署?

1 动态索引层面
基于模板+时间+rollover api滚动创建索引,举例:设计阶段定义:blog索引的模板格式为:blog_index_时间戳的形式,每天递增数据。这样做的好处:不至于数据量激增导致单个索引数据量非常大,接近于上线2的32次幂-1,索引存储达到了TB+甚至更大。一旦单个索引很大,存储等各种风险也随之而来,所以要提前考虑+及早避免。

2 存储层面
冷热数据分离存储,热数据(比如最近3天或者一周的数据),其余为冷数据。对于冷数据不会再写入新数据,可以考虑定期force_merge加shrink压缩操作,节省存储空间和检索效率。

3 部署层面
一旦之前没有规划,这里就属于应急策略。结合ES自身的支持动态扩展的特点,动态新增机器的方式可以缓解集群压力,注意:如果之前主节点等规划合理,不需要重启集群也能完成动态新增的。

13、在使用 Elasticsearch 时要注意什么?

由于ES使用的Java写的,所有注意的是GC方面的问题

1、倒排词典的索引需要常驻内存,无法 GC,需要监控 data node 上 segmentmemory 增长趋势。
2、各类缓存,field cache, filter cache, indexing cache, bulk queue 等等,要设置合理的大小,并且要应该根据最坏的情况来看 heap 是否够用,也就是各类缓存全部占满的时候,还有 heap 空间可以分配给其他任务吗?避免采用 clear cache等“自欺欺人”的方式来释放内存。
3、避免返回大量结果集的搜索与聚合。确实需要大量拉取数据的场景,可以采用scan & scroll api 来实现。
4、cluster stats 驻留内存并无法水平扩展,超大规模集群可以考虑分拆成多个集群通过 tribe node 连接
5、想知道 heap 够不够,必须结合实际应用场景,并对集群的 heap 使用情况做持续的监控。

14、Elasticsearch 支持哪些类型的查询?

查询主要分为两种类型:精确匹配、全文检索匹配。
精确匹配,例如 term、exists、term set、 range、prefix、 ids、 wildcard、regexp、 fuzzy等。
全文检索,例如match、match_phrase、multi_match、match_phrase_prefix、query_string 等

15、你能否列出与 Elasticsearch 有关的主要可用字段数据类型?

1、字符串数据类型,包括支持全文检索的 text 类型 和 精准匹配的 keyword 类型。
2、数值数据类型,例如字节,短整数,长整数,浮点数,双精度数,half_float,scaled_float。
3、日期类型,日期纳秒Date nanoseconds,布尔值,二进制(Base64编码的字符串)等。
4、范围(整数范围 integer_range,长范围 long_range,双精度范围 double_range,浮动范围 float_range,日期范围 date_range)。
5、包含对象的复杂数据类型,nested 、Object。
6、GEO 地理位置相关类型。
7、特定类型如:数组(数组中的值应具有相同的数据类型)

16、如何监控 Elasticsearch 集群状态?

Marvel 让你可以很简单的通过 Kibana 监控 Elasticsearch。你可以实时查看你的集群健康状态和性能,也可以分析过去的集群、索引和节点指标。

17、有了解过Elasticsearch的性化搜索方案吗?

基于word2vec和Elasticsearch实现个性化搜索
(1)基于word2vec、Elasticsearch和自定义的脚本插件,我们就实现了一个个性化的搜索服务,相对于原有的实现,新版的点击率和转化率都有大幅的提升;
(2)基于word2vec的商品向量还有一个可用之处,就是可以用来实现相似商品的推荐;
(3)使用word2vec来实现个性化搜索或个性化推荐是有一定局限性的,因为它只能处理用户点击历史这样的时序数据,而无法全面的去考虑用户偏好,这个还是有很大的改进和提升的空间;

18、是否了解字典树?

es分词器ik_smart es分词器面试题_es分词器ik_smart

Trie 的核心思想是空间换时间,利用字符串的公共前缀来降低查询时间的开销以

达到提高效率的目的。它有 3 个基本性质:

1、根节点不包含字符,除根节点外每一个节点都只包含一个字符。

2、从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。

3、每个节点的所有子节点包含的字符都不相同。

es分词器ik_smart es分词器面试题_数据库_02

1、可以看到,trie 树每一层的节点数是 26^i 级别的。所以为了节省空间,我们
还可以用动态链表,或者用数组来模拟动态。而空间的花费,不会超过单词数×单
词长度。
2、实现:对每个结点开一个字母集大小的数组,每个结点挂一个链表,使用左儿子右兄弟表示法记录这棵树;
3、对于中文的字典树,每个节点的子节点用一个哈希表存储,这样就不用浪费太大的空间,而且查询速度上可以保留哈希的复杂度 O(1)。

19、ElasticSearch是否有架构?

1、ElasticSearch可以有一个架构。架构是描述文档类型以及如何处理文档的不同字段的一个或多个字段的描述。Elasticsearch中的架构是一种映射,它描述了JSON文档中的字段及其数据类型,以及它们应该如何在Lucene索引中进行索引。因此,在Elasticsearch术语中,我们通常将此模式称为“映射”。
2、Elasticsearch具有架构灵活的能力,这意味着可以在不明确提供架构的情况下索引文档。如果未指定映射,则默认情况下,Elasticsearch会在索引期间检测文档中的新字段时动态生成一个映射。

20、为什么要使用Elasticsearch?

因为在我们商城中的数据,将来会非常多,所以采用以往的模糊查询,模糊查询前置配置,会放弃索引,导致商品查询是全表扫面,在百万级别的数据库中,效率非常低下,而我们使用ES做一个全文索引,我们将经常查询的商品的某些字段,比如说商品名,描述、价格还有id这些字段我们放入我们索引库里,可以提高查询速度。