现在的高级语言如java,c#等,都采用了垃圾收集机制,而不再是c,c++里用户自己管理维护内存的方式。自己管理内存极其自由,可以任意申请内存,但如同一把双刃剑,为大量内存泄露,悬空指针等bug埋下隐患。
对于一个字符串、列表、类甚至数值都是对象,且定位简单易用的语言,自然不会让用户去处理如何分配回收内存的问题。
python里也同java一样采用了垃圾收集机制,不过不一样的是,python采用的是引用计数机制为主,标记-清除和分代收集两种机制为辅的策略。
引用计数机制:
python里每一个东西都是对象,它们的核心就是一个结构体:PyObject
1
typedef struct_object {
2
int ob_refcnt;
3
struct_typeobject *ob_type;
4
}PyObject;
PyObject是每个对象必有的内容,其中ob_refcnt就是做为引用计数。当一个对象有新的引用时,它的ob_refcnt就会增加,当引用它的对象被删除,它的ob_refcnt就会减少
1
#define Py_INCREF(op) ((op)->ob_refcnt++) //增加计数
2
#define Py_DECREF(op) \ //减少计数
3
if (--(op)->ob_refcnt != 0) \
4
; \
5
else \
6
__Py_Dealloc((PyObject *)(op))
引用计数为0时,该对象生命就结束了。
引用计数机制的优点:
1、简单
2、实时性:一旦没有引用,内存就直接释放了。不用像其他机制等到特定时机。实时性还带来一个好处:处理回收内存的时间分摊到了平时。
引用计数机制的缺点:
1、维护引用计数消耗资源
2、循环引用
1
list1 = []
2
list2 = []
3
list1.append(list2)
4
list2.append(list1)
list1与list2相互引用,如果不存在其他对象对它们的引用,list1与list2的引用计数也仍然为1,所占用的内存永远无法被回收,这将是致命的。
对于如今的强大硬件,缺点1尚可接受,但是循环引用导致内存泄露,注定python还将引入新的回收机制。
上面说到python里回收机制是以引用计数为主,标记-清除和分代收集两种机制为辅。
1、标记-清除机制
标记-清除机制,顾名思义,首先标记对象(垃圾检测),然后清除垃圾(垃圾回收)。如图1:
图1
首先初始所有对象标记为白色,并确定根节点对象(这些对象是不会被删除),标记它们为黑色(表示对象有效)。将有效对象引用的对象标记为灰色(表示对象可达,
但它们所引用的对象还没检查),检查完灰色对象引用的对象后,将灰色标记为黑色。重复直到不存在灰色节点为止。最后白色结点都是需要清除的对象。
2、回收对象的组织
这里所采用的高级机制作为引用计数的辅助机制,用于解决产生的循环引用问题。而循环引用只会出现在“内部存在可以对其他对象引用的对象”,比如:list,class等。
为了要将这些回收对象组织起来,需要建立一个链表。自然,每个被收集的对象内就需要多提供一些信息,下面代码是回收对象里必然出现的。
一个对象的实际结构如图2:
图2
通过PyGC_Head的指针将每个回收对象连接起来,形成了一个链表,也就是在1里提到的初始化的所有对象。
3、分代技术
分代技术是一种典型的以空间换时间的技术,这也正是java里的关键技术。这种思想简单点说就是:对象存在时间越长,越可能不是垃圾,应该越少去收集。
这样的思想,可以减少标记-清除机制所带来的额外操作。分代就是将回收对象分成数个代,每个代就是一个链表(集合),代进行标记-清除的时间与代内对象
存活时间成正比例关系。
从上面代码可以看出python里一共有三代,每个代的threshold值表示该代最多容纳对象的个数。默认情况下,当0代超过700,或1,2代超过10,垃圾回收机制将触发。
0代触发将清理所有三代,1代触发会清理1,2代,2代触发后只会清理自己。
下面是一个完整的收集流程:链表建立,确定根节点,垃圾标记,垃圾回收~
1、链表建立
首先,中里在分代技术说过:0代触发将清理所有三代,1代触发会清理1,2代,2代触发后只会清理自己。在清理0代时,会将三个链表(代)链接起来,清理1代的时,会链接1,2两代。在后面三步,都是针对的这个建立之后的链表。
2、确定根节点
图1为一个例子。list1与list2循环引用,list3与list4循环引用。a是一个外部引用。
图1
对于这样一个链表,我们如何得出根节点呢。python里是在引用计数的基础上又提出一个有效引用计数的概念。顾名思义,有效引用计数就是去除循环引用后的计数。
下面是计算有效引用计数的相关代码:
01
/* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 for all objects
02
* in containers, and is GC_REACHABLE for all tracked gc objects not in
03
* containers.
04
*/
05
static void
06
update_refs(PyGC_Head *containers)
07
{
08
PyGC_Head *gc = containers->gc.gc_next;
09
for (; gc != containers; gc = gc->gc.gc_next) {
10
assert(gc->gc.gc_refs == GC_REACHABLE);
11
gc->gc.gc_refs = Py_REFCNT(FROM_GC(gc));
12
assert(gc->gc.gc_refs != 0);
13
}
14
}
15
16
/* A traversal callback for subtract_refs. */
17
static int
18
visit_decref(PyObject *op, void *data)
19
{
20
assert(op != NULL);
21
if (PyObject_IS_GC(op)) {
22
PyGC_Head *gc = AS_GC(op);
23
/* We're only interested in gc_refs for objects in the
24
* generation being collected, which can be recognized
25
* because only they have positive gc_refs.
26
*/
27
assert(gc->gc.gc_refs != 0); /* else refcount was too small */
28
if (gc->gc.gc_refs > 0)
29
gc->gc.gc_refs--;
30
}
31
return 0;
32
}
33
34
/* Subtract internal references from gc_refs. After this, gc_refs is >= 0
35
* for all objects in containers, and is GC_REACHABLE for all tracked gc
36
* objects not in containers. The ones with gc_refs > 0 are directly
37
* reachable from outside containers, and so can't be collected.
38
*/
39
static void
40
subtract_refs(PyGC_Head *containers)
41
{
42
traverseproc traverse;
43
PyGC_Head *gc = containers->gc.gc_next;
44
for (; gc != containers; gc=gc->gc.gc_next) {
45
traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
46
(void) traverse(FROM_GC(gc),
47
(visitproc)visit_decref,
48
NULL);
49
}
50
}
update_refs函数里建立了一个引用的副本。
visit_decref函数对引用的副本减1,subtract_refs函数里traverse的作用是遍历对象里的每一个引用,执行visit_decref操作。
最后,链表内引用计数副本非0的对象,就是根节点了。
说明:
1、为什么要建立引用副本?
答:这个过程是寻找根节点的过程,在这个时候修改计数不合适。subtract_refs会对对象的引用对象执行visit_decref操作。如果链表内对象引用了链表外对象,那么链表外对象计数会减1,显然,很有可能这个对象会被回收,而回收机制里根本不应该对非回收对象处理。
2、traverse的疑问(未解决)?
答:一开始,有个疑问。上面例子里,subtract_refs函数中处理完list1结果应该如下:
然后gc指向list2,此时list2的副本(为0)不会减少,但是list2对list1还是存在实际上的引用,那么list1副本会减1吗?显然,如果减1就出问题了。
所以list1为0时,traverse根本不会再去处理list1这些引用(或者说,list2对list1名义上不存在引用了)。
此时,又有一个问题,如果存在一个外部对象b,对list2引用,subtract_refs函数中处理完list1后,如下图:
当subtract_refs函数中遍历到list2时,list2的副本还会减1吗?显然traverse的作用还是没有理解。
3、垃圾标记
接下来,python建立两条链表,一条存放根节点,以及根节点的引用对象。另外一条存放unreachable对象。
标记的方法就是中里的标记思路,代码如下:
001
/* A traversal callback for move_unreachable. */
002
static int
003
visit_reachable(PyObject *op, PyGC_Head *reachable)
004
{
005
if (PyObject_IS_GC(op)) {
006
PyGC_Head *gc = AS_GC(op);
007
const Py_ssize_t gc_refs = gc->gc.gc_refs;
008
009
if (gc_refs == 0) {
010
/* This is in move_unreachable's 'young' list, but
011
* the traversal hasn't yet gotten to it. All
012
* we need to do is tell move_unreachable that it's
013
* reachable.
014
*/
015
gc->gc.gc_refs = 1;
016
}
017
else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) {
018
/* This had gc_refs = 0 when move_unreachable got
019
* to it, but turns out it's reachable after all.
020
* Move it back to move_unreachable's 'young' list,
021
* and move_unreachable will eventually get to it
022
* again.
023
*/
024
gc_list_move(gc, reachable);
025
gc->gc.gc_refs = 1;
026
}
027
/* Else there's nothing to do.
028
* If gc_refs > 0, it must be in move_unreachable's 'young'
029
* list, and move_unreachable will eventually get to it.
030
* If gc_refs == GC_REACHABLE, it's either in some other
031
* generation so we don't care about it, or move_unreachable
032
* already dealt with it.
033
* If gc_refs == GC_UNTRACKED, it must be ignored.
034
*/
035
else {
036
assert(gc_refs > 0
037
|| gc_refs == GC_REACHABLE
038
|| gc_refs == GC_UNTRACKED);
039
}
040
}
041
return 0;
042
}
043
044
/* Move the unreachable objects from young to unreachable. After this,
045
* all objects in young have gc_refs = GC_REACHABLE, and all objects in
046
* unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE. All tracked
047
* gc objects not in young or unreachable still have gc_refs = GC_REACHABLE.
048
* All objects in young after this are directly or indirectly reachable
049
* from outside the original young; and all objects in unreachable are
050
* not.
051
*/
052
static void
053
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
054
{
055
PyGC_Head *gc = young->gc.gc_next;
056
057
/* Invariants: all objects "to the left" of us in young have gc_refs
058
* = GC_REACHABLE, and are indeed reachable (directly or indirectly)
059
* from outside the young list as it was at entry. All other objects
060
* from the original young "to the left" of us are in unreachable now,
061
* and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the
062
* left of us in 'young' now have been scanned, and no objects here
063
* or to the right have been scanned yet.
064
*/
065
066
while (gc != young) {
067
PyGC_Head *next;
068
069
if (gc->gc.gc_refs) {
070
/* gc is definitely reachable from outside the
071
* original 'young'. Mark it as such, and traverse
072
* its pointers to find any other objects that may
073
* be directly reachable from it. Note that the
074
* call to tp_traverse may append objects to young,
075
* so we have to wait until it returns to determine
076
* the next object to visit.
077
*/
078
PyObject *op = FROM_GC(gc);
079
traverseproc traverse = Py_TYPE(op)->tp_traverse;
080
assert(gc->gc.gc_refs > 0);
081
gc->gc.gc_refs = GC_REACHABLE;
082
(void) traverse(op,
083
(visitproc)visit_reachable,
084
(void *)young);
085
next = gc->gc.gc_next;
086
}
087
else {
088
/* This *may* be unreachable. To make progress,
089
* assume it is. gc isn't directly reachable from
090
* any object we've already traversed, but may be
091
* reachable from an object we haven't gotten to yet.
092
* visit_reachable will eventually move gc back into
093
* young if that's so, and we'll see it again.
094
*/
095
next = gc->gc.gc_next;
096
gc_list_move(gc, unreachable);
097
gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE;
098
}
099
gc = next;
100
}
101
}
标记之后,链表如上图。
4、垃圾回收
回收的过程,就是销毁不可达链表内对象。下面代码就是list的清除方法:
01
/* Methods */
02
03
static void
04
list_dealloc(PyListObject *op)
05
{
06
Py_ssize_t i;
07
PyObject_GC_UnTrack(op);
08
Py_TRASHCAN_SAFE_BEGIN(op)
09
if (op->ob_item != NULL) {
10
/* Do it backwards, for Christian Tismer.
11
There's a simple test case where somehow this reduces
12
thrashing when a *very* large list is created and
13
immediately deleted. */
14
i = Py_SIZE(op);
15
while (--i >= 0) {
16
Py_XDECREF(op->ob_item[i]);
17
}
18
PyMem_FREE(op->ob_item);
19
}
20
if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op))
21
free_list[numfree++] = op;
22
else
23
Py_TYPE(op)->tp_free((PyObject *)op);
24
Py_TRASHCAN_SAFE_END(op)
25
}