1、 概述
Kafka是Linkedin于2010年12月份开源的消息系统,它主要用于处理活跃的流式数据。活跃的流式数据在web网站应用中非常常见,这些数据包括网站的pv、用户访问了什么内容,搜索了什么内容等。 这些数据通常以日志的形式记录下来,然后每隔一段时间进行一次统计处理。
传统的日志分析系统提供了一种离线处理日志信息的可扩展方案,但若要进行实时处理,通常会有较大延迟。而现有的消(队列)系统能够很好的处理实时或者近似实时的应用,但未处理的数据通常不会写到磁盘上,这对于Hadoop之类(一小时或者一天只处理一部分数据)的离线应用而言,可能存在问题。Kafka正是为了解决以上问题而设计的,它能够很好地离线和在线应用。
2、 设计目标
(1)数据在磁盘上存取代价为O(1)。一般数据在磁盘上是使用BTree存储的,存取代价为O(lgn)。
(2)高吞吐率。即使在普通的节点上每秒钟也能处理成百上千的message。
(3)显式分布式,即所有的producer、broker和consumer都会有多个,均为分布式的。
(4)支持数据并行加载到Hadoop中。
3、 KafKa部署结构
kafka是显式分布式架构,producer、broker(Kafka)和consumer都可以有多个。Kafka的作用类似于缓存,即活跃的数据和离线处理系统之间的缓存。几个基本概念:
(1)message(消息)是通信的基本单位,每个producer可以向一个topic(主题)发布一些消息。如果consumer订阅了这个主题,那么新发布的消息就会广播给这些consumer。
(2)Kafka是显式分布式的,多个producer、consumer和broker可以运行在一个大的集群上,作为一个逻辑整体对外提供服务。对于consumer,多个consumer可以组成一个group,这个message只能传输给某个group中的某一个consumer.
4、 KafKa关键技术点
(1) zero-copy
在Kafka上,有两个原因可能导致低效:1)太多的网络请求 2)过多的字节拷贝。为了提高效率,Kafka把message分成一组一组的,每次请求会把一组message发给相应的consumer。 此外, 为了减少字节拷贝,采用了sendfile系统调用。为了理解sendfile原理,先说一下传统的利用socket发送文件要进行拷贝:
Sendfile系统调用:
(2) Exactly once message transfer
怎样记录每个consumer处理的信息的状态?在Kafka中仅保存了每个consumer已经处理数据的offset。这样有两个好处:1)保存的数据量少 2)当consumer出错时,重新启动consumer处理数据时,只需从最近的offset开始处理数据即可。
(3)Push/pull
Producer 向Kafka(push)推数据,consumer 从kafka 拉(pull)数据。
(4)负载均衡和容错
Producer和broker之间没有负载均衡机制。
broker和consumer之间利用zookeeper进行负载均衡。所有broker和consumer都会在zookeeper中进行注册,且zookeeper会保存他们的一些元数据信息。如果某个broker和consumer发生了变化,所有其他的broker和consumer都会得到通知。
【参考资料】
【1】Kafka主页:http://sna-projects.com/kafka/design.php
【2】Zero-copy原理:https://www.ibm.com/developerworks/linux/library/j-zerocopy/
【3】Kafka与Hadoop:http://sna-projects.com/sna/media/kafka_hadoop.pdf
kafka 介绍
kafka是一种高吞吐量的分布式发布订阅消息系统,她有如下特性:
通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
高吞吐量:即使是非常普通的硬件kafka也可以支持每秒数十万的消息。
支持通过kafka服务器和消费机集群来分区消息。
支持Hadoop并行数据加载。
设计侧重高吞吐量,用于好友动态,相关性统计,排行统计,访问频率控制,批处理等系统。大部分的消息中间件能够处理实时性要求高的消息/数据,但是对于队列中大量未处理的消息/数据在持久性方面比较弱。
kakfa的consumer使用拉的方式工作。
安装kafka
下载:http://people.apache.org/~nehanarkhede/kafka-0.7.0-incubating/kafka-0.7.0-incubating-src.tar.gz
> tar xzf kafka-.tgz
> cd kafka-
> ./sbt update
> ./sbt package
启动zkserver:
bin/zookeeper-server-start.sh config/zookeeper.properties
启动server:
bin/kafka-server-start.sh config/server.properties
就是这么简单。
使用kafka
1. import
2. import
3. import
4. import
5. import
6. import
7. import
8.
9. ...
10.
11. Properties props = new
12. props.put(“zk.connect”, “127.0.0.1:2181”);
13. props.put("serializer.class", "kafka.serializer.StringEncoder");
14. ProducerConfig config = new
15. Producer<String, String> producer = new
16.
17. Send a single message
18.
19. // The message is sent to a randomly selected partition registered in ZK
20. ProducerData<String, String> data = new ProducerData<String, String>("test-topic", "test-message");
21. producer.send(data);
22.
23. producer.close();
这样就是一个标准的producer。
consumer的代码
1. // specify some consumer properties
2. Properties props = new
3. props.put("zk.connect", "localhost:2181");
4. props.put("zk.connectiontimeout.ms", "1000000");
5. props.put("groupid", "test_group");
6.
7. // Create the connection to the cluster
8. ConsumerConfig consumerConfig = new
9. ConsumerConnector consumerConnector = Consumer.createJavaConsumerConnector(consumerConfig);
10.
11. // create 4 partitions of the stream for topic “test”, to allow 4 threads to consume
12. Map<String, List<KafkaMessageStream<Message>>> topicMessageStreams =
13. "test", 4));
14. List<KafkaMessageStream<Message>> streams = topicMessageStreams.get("test");
15.
16. // create list of 4 threads to consume from each of the partitions
17. ExecutorService executor = Executors.newFixedThreadPool(4);
18.
19. // consume the messages in the threads
20. for(final
21. new
22. public void
23. for(Message message: stream) {
24. // process message
25. }
26. }
27. });
28. }