历届试题 带分数
时间限制:1.0s 内存限制:256.0MB
问题描述
100 可以表示为带分数的形式:100 = 3 + 69258 / 714。
还可以表示为:100 = 82 + 3546 / 197。
注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0)。
类似这样的带分数,100 有 11 种表示法。
输入格式
从标准输入读入一个正整数N (N<1000*1000)
输出格式
程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!
样例输入1
100
样例输出1
11
样例输入2
105
样例输出2
6
思路:
首先,这个题用暴力枚举一定会超时的,所以我就没试。
为何暴力枚举会超时?
原因在于,暴力枚举会搜索到很庞大的没有用的数据,最后在十几万甚至几百万个组合中,也许仅仅只有十几种
组合符合条件,这就大大的浪费了时间。想要避免这类事件的发生,就要有好的剪枝条件。
如何建造好的剪枝条件?
本题说的是,n=a+b/c;那么首先a一定是小于n的,又因为n为整数,所以a和b/c都是整数,这就要求
b/c一定可以整除,所以b%c=0,b/c还要满足可除条件,即b>=c。剪枝的三个条件已经确定
(1).a<n;
(2).b%c=0;
(3).b>=c
再加上n=a+b/c就是四个条件了。只要在1至9的全排列中选取满足这四个条件的全排列就是所求的结果之一。
那么在1至9的全排列(9个数字)中如何确定a,b,c的取值范围呢?
a前面已经说过,而又知道,b一定大于或等于c,则b的取值范围一定在a选择过后去选择剩下的一半或一半以上的数据。举个例子,1至9的其中一个全排列--156987423,若a选择156,则b只能选择剩下的987423中的一半或
一半以上,如987、9874、98742。如果b小于剩下的一半,那么一定不满足除法(如98/7432)。c
的范围则是a和b选择剩下的所有了。这样我们就可以判定,假设num=9,a选择9位中的前n位,那
么b的结尾选择范围为第n+(num-n)/2至num-1位数字(结尾为一半或一半以上,最多时到num-1
,给c留一个数字);
那么利用深度优先搜索(用来得到一个9位的全排列)和适当的判断(剪枝,找出符合3个条件并
且满足n=a+b/c的全排列)就可以解决。
AC代码:
检测100所用的时间: