题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3488
本题求最小权匹配,将边权值变为相反数,结果取相反数,KM即可求。
代码:
#include <stdio.h>
#include <ctime>
#include <math.h>
#include <limits.h>
#include <complex>
#include <string>
#include <functional>
#include <iterator>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <list>
#include <bitset>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <iostream>
#include <ctime>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <time.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>
using namespace std;
const int N = 310;
const int INF = 0x3f3f3f3f;
int nx, ny;
int g[N][N];
int linker[N], lx[N], ly[N];
int slack[N];
bool visx[N], visy[N];
bool dfs(int x)
{
visx[x] = true;
for (int y = 0; y < ny; y++)
{
if (visy[y]) continue;
int tmp = lx[x] + ly[y] - g[x][y];
if (tmp == 0)
{
visy[y] = true;
if (linker[y] == -1 || dfs(linker[y]))
{
linker[y] = x;
return true;
}
}
else if (slack[y] > tmp)
slack[y] = tmp;
}
return false;
}
int KM()
{
memset(linker, -1, sizeof(linker));
memset(ly, 0, sizeof(ly));
for (int i = 0; i < nx; i++)
{
lx[i] = -INF;
for (int j = 0; j < ny; j++)
{
if (g[i][j] > lx[i])
lx[i] = g[i][j];
}
}
for (int x = 0; x < nx; x++)
{
for (int i = 0; i < ny; i++)
slack[i] = INF;
while (true)
{
memset(visx, false, sizeof(visx));
memset(visy, false, sizeof(visy));
if (dfs(x)) break;
int d = INF;
for (int i = 0; i < ny; i++)
if (!visy[i] && d > slack[i])
d = slack[i];
for (int i = 0; i < nx; i++)
if (visx[i])
lx[i] -= d;
for (int i = 0; i < ny; i++)
{
if (visy[i]) ly[i] += d;
else slack[i] -= d;
}
}
}
int res = 0;
for (int i = 0; i < ny; i++)
{
if (linker[i] != -1)
res += g[linker[i]][i];
}
return res;
}
int main()
{
int t, n, m;
scanf("%d",&t);
while (t--)
{
scanf("%d %d", &n,&m);
for (int i = 0;i <= n;i++)
for (int j = 0;j <= n;j++)
g[i][j] = -INF;
int u, v, w;
while (m--)
{
scanf("%d%d%d", &u, &v, &w);
u--, v--;
if (g[u][v] < -w)
g[u][v] = -1 * w;
}
nx = ny = n;
printf("%d\n", -1 * KM());
}
return 0;
}