加载cifar10数据集

cifar10_dir = 'C:/Users/1/.keras/datasets/cifar-10-batches-py'
(train_images, train_labels), (test_images, test_labels) = load_data(cifar10_dir)

注意:在官网下好cifar10数据集后将其解压成下面形式

TensorFlow加载cifar10数据集_数据集

load_local_cifar10.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

import numpy as np
from six.moves import cPickle
from tensorflow.keras import backend as K


def load_batch(fpath, label_key='labels'):
"""Internal utility for parsing CIFAR data.
# Arguments
fpath: path the file to parse.
label_key: key for label data in the retrieve
dictionary.
# Returns
A tuple `(data, labels)`.
"""
with open(fpath, 'rb') as f:
if sys.version_info < (3,):
d = cPickle.load(f)
else:
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
data = d['data']
labels = d[label_key]

data = data.reshape(data.shape[0], 3, 32, 32)
return data, labels


def load_data(ROOT):
"""Loads CIFAR10 dataset.
# Returns
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
"""
# dirname = 'cifar-10-batches-py'
# origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
# path = get_file(dirname, origin=origin, untar=True)
path = ROOT

num_train_samples = 50000

x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')

for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000: i * 10000, :, :, :],
y_train[(i - 1) * 10000: i * 10000]) = load_batch(fpath)

fpath = os.path.join(path, 'test_batch')
x_test, y_test = load_batch(fpath)

y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))

if K.image_data_format() == 'channels_last':
x_train = x_train.transpose(0, 2, 3, 1)
x_test = x_test.transpose(0, 2, 3, 1)

return (x_train, y_train), (x_test, y_test)