Cache

          缓存区,是高速缓存,是位于CPU和主内存之间的容量较小但速度很快的存储器,因为CPU的速度远远高于主内存的速度,CPU从内存中读取数据需等待很长的时间,而  Cache保存着CPU刚用过的数据或循环使用的部分数据,这时从Cache中读取数据会更快,减少了CPU等待的时间,提高了系统的性能。

    Cache并不是缓存文件的,而是缓存块的(块是I/O读写最小的单元);Cache一般会用在I/O请求上,如果多个进程要访问某个文件,可以把此文件读入Cache中,这样下一个进程获取CPU控制权并访问此文件直接从Cache读取,提高系统性能。

 

Buffer

        缓冲区,用于存储速度不同步的设备或优先级不同的设备之间传输数据;通过buffer可以减少进程间通信需要等待的时间,当存储速度快的设备与存储速度慢的设备进行通信时,存储慢的数据先把数据存放到buffer,达到一定程度存储快的设备再读取buffer的数据,在此期间存储快的设备CPU可以干其他的事情。

     Buffer:一般是用在写入磁盘的,例如:某个进程要求多个字段被读入,当所有要求的字段被读入之前已经读入的字段会先放到buffer中。

 

 

Cache与buffer的区别_数据

下面先解释一下输出的内容:
Mem 行(第二行)是内存的使用情况。
Swap 行(第三行)是交换空间的使用情况。
total 列显示系统总的可用物理内存和交换空间大小。
used 列显示已经被使用的物理内存和交换空间。
free 列显示还有多少物理内存和交换空间可用使用。
shared 列显示被共享使用的物理内存大小。
buff/cache 列显示被 buffer 和 cache 使用的物理内存大小。
available 列显示还可以被应用程序使用的物理内存大小。

free 与 available

         在 free 命令的输出中,有一个 free 列,同时还有一个 available 列。这二者到底有何区别?
free 是真正尚未被使用的物理内存数量。至于 available 就比较有意思了,它是从应用程序的角度看到的可用内存数量。Linux 内核为了提升磁盘操作的性能,会消耗一部分内存去缓存磁盘数据,就是我们介绍的 buffer 和 cache。所以对于内核来说,buffer 和 cache 都属于已经被使用的内存。当应用程序需要内存时,如果没有足够的 free 内存可以用,内核就会从 buffer 和 cache 中回收内存来满足应用程序的请求。所以从应用程序的角度来说,available  = free + buffer + cache。请注意,这只是一个很理想的计算方式,实际中的数据往往有较大的误差。

交换空间(swap space)

swap space 是磁盘上的一块区域,可以是一个分区,也可以是一个文件。所以具体的实现可以是 swap 分区也可以是 swap 文件。当系统物理内存吃紧时,Linux 会将内存中不常访问的数据保存到 swap 上,这样系统就有更多的物理内存为各个进程服务,而当系统需要访问 swap 上存储的内容时,再将 swap 上的数据加载到内存中,这就是常说的换出和换入。交换空间可以在一定程度上缓解内存不足的情况,但是它需要读写磁盘数据,所以性能不是很高。

现在的机器一般都不太缺内存,如果系统默认还是使用了 swap 是不是会拖累系统的性能?理论上是的,但实际上可能性并不是很大。并且内核提供了一个叫做 swappiness 的参数,用于配置需要将内存中不常用的数据移到 swap 中去的紧迫程度。这个参数的取值范围是 0~100,0 告诉内核尽可能的不要将内存数据移到 swap 中,也即只有在迫不得已的情况下才这么做,而 100 告诉内核只要有可能,尽量的将内存中不常访问的数据移到 swap 中。在 ubuntu 系统中,swappiness 的默认值是 60。如果我们觉着内存充足,可以在 /etc/sysctl.conf 文件中设置 swappiness:

 

  在linux系统特性里,将物理内存作为缓存区或缓冲区在用,因此,