day23
309. 最佳买卖股票时机含冷冻期
力扣题目链接
题目
给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
示例 2:
提示:
思路
- 确定dp数组以及下标的含义
dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]
。
其实本题很多同学搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。 具体可以区分出如下四个状态:
- 状态一:买入股票状态(今天买入股票,或者是之前就买入了股票然后没有操作)
- 卖出股票状态,这里就有两种卖出股票状态
- 状态二:两天前就卖出了股票,度过了冷冻期,一直没操作,今天保持卖出股票状态
- 状态三:今天卖出了股票
- 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
j的状态为:
- 0:状态一
- 1:状态二
- 2:状态三
- 3:状态四
注意这里的每一个状态,例如状态一,是买入股票状态并不是说今天已经就买入股票,而是说保存买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。
- 确定递推公式
达到买入股票状态(状态一)即:dp[i][0]
,有两个具体操作:
- 操作一:前一天就是持有股票状态(状态一),
dp[i][0] = dp[i - 1][0]
- 操作二:今天买入了,有两种情况
- 前一天是冷冻期(状态四),
dp[i - 1][3] - prices[i]
- 前一天是保持卖出股票状态(状态二),
dp[i - 1][1] - prices[i]
所以操作二取最大值,即:max(dp[i - 1][3], dp[i - 1][1]) - prices[i]
那么dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
达到保持卖出股票状态(状态二)即:dp[i][1]
,有两个具体操作:
- 操作一:前一天就是状态二
- 操作二:前一天是冷冻期(状态四)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
达到今天就卖出股票状态(状态三),即:dp[i][2]
,只有一个操作:
- 操作一:昨天一定是买入股票状态(状态一),今天卖出
即:dp[i][2] = dp[i - 1][0] + prices[i];
达到冷冻期状态(状态四),即:dp[i][3]
,只有一个操作:
- 操作一:昨天卖出了股票(状态三)
dp[i][3] = dp[i - 1][2];
综上分析,递推代码如下:
- dp数组如何初始化
这里主要讨论一下第0天如何初始化。
如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],买入股票所剩现金为负数。
保持卖出股票状态(状态二),第0天没有卖出dp[0][1]初始化为0就行,
今天卖出了股票(状态三),同样dp[0][2]初始化为0,因为最少收益就是0,绝不会是负数。
同理dp[0][3]也初始为0。
- 确定遍历顺序
从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。
- 举例推导dp数组
以 [1,2,3,0,2] 为例,dp数组如下:
最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。
代码实现
714. 买卖股票的最佳时机含手续费
力扣题目链接
题目
给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
示例 2:
提示:
思路
dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:
dp[i - 1][0]
- 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:
dp[i - 1][1] - prices[i]
所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:
dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:
dp[i - 1][0] + prices[i] - fee
所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
代码实现
300. 最长递增子序列
力扣题目链接
题目
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
示例 2:
示例 3:
思路
- dp[i]的定义
dp[i]表示i之前包括i在内的以nums[i]结尾最长上升子序列的长度
- 状态转移方程
位置i的最长升序子序列等于j从0到i-1
各个位置的最长升序子序列 + 1 的最大值。
所以:if (nums[j] < nums[i]) dp[i] = max(dp[i], dp[j] + 1);
- dp[i]的初始化
每一个i,对应的dp[i](即最长上升子序列)起始大小至少都是1 (自身也算是上升子序列)。
- 确定遍历顺序
dp[i] 是有0到i-1各个位置的最长升序子序列 推导而来,那么遍历i一定是从前向后遍历。
j其实就是0到i-1,遍历i的循环在外层,遍历j则在内层,代码如下:
- 举例推导dp数组
输入:[0,1,0,3,2],dp数组的变化如下:
代码实现
674. 最长连续递增序列
力扣题目链接
题目
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:
示例 2:
提示:
思路
- 确定dp数组(dp table)以及下标的含义
dp[i]:以下标i为结尾的数组的连续递增的子序列长度为dp[i]。
注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。
- 确定递推公式
如果 nums[i + 1] > nums[i]
,那么以 i+1 为结尾的数组的连续递增的子序列长度 一定等于 以i为结尾的数组的连续递增的子序列长度 + 1 。
即:dp[i + 1] = dp[i] + 1;
因为本题要求连续递增子序列
,所以就必要比较 nums[i + 1]
与 nums[i]
,而不用去比较nums[j] 与 nums[i] (j是在0到i之间遍历)。
既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较 nums[i + 1] 和 nums[i]。
- dp数组如何初始化
以下标i为结尾的数组的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。
所以dp[i]应该初始1;
- 确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。
本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:
- 举例推导dp数组
以输入nums = [1,3,5,4,7]为例,dp数组状态如下:
注意这里要取dp[i]里的最大值,所以dp[2]才是结果!
概括来说:不连续递增子序列的跟前0-i 个状态有关,连续递增的子序列只跟前一个状态有关
代码实现
718. 最长重复子数组
力扣题目链接
题目
给两个整数数组 nums1
和 nums2
,返回 两个数组中 公共的 、长度最长的子数组的长度 。
示例 1:
示例 2:
提示:
思路
注意题目中说的子数组,其实就是连续子序列。
- 确定dp数组(dp table)以及下标的含义
dp[i][j] :以下标 i - 1
为结尾的A,和以下标 j - 1
为结尾的B,最长重复子数组长度为dp[i][j]
。
- 确定递推公式
根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。
即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
根据递推公式可以看出,遍历i 和 j 要从1开始!
- dp数组如何初始化
根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式 dp[i][j] = dp[i - 1][j - 1] + 1;
所以dp[i][0] 和dp[0][j]初始化为0。
举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。
- 确定遍历顺序
外层for循环遍历A,内层for循环遍历B。
也可以外层for循环遍历B,内层for循环遍历A。
- 举例推导dp数组
拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:
代码实现
1143. 最长公共子序列
力扣题目链接
题目
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
示例 2:
示例 3:
提示:
思路
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:长度为[0, i - 1]
的字符串text1与长度为 [0, j - 1]
的字符串text2的最长公共子序列为 dp[i][j]
- 确定递推公式
主要就是两大情况: text1[i - 1] 与 text2[j - 1] 相同,text1[i - 1] 与 text2[j - 1] 不相同
-
如果 text1[i - 1] 与 text2[j - 1]相同
,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
-
如果 text1[i - 1] 与 text2[j - 1] 不相同
,那就看看text1[0, i - 2]
与text2[0, j - 1]
的最长公共子序列 和text1[0, i - 1]
与text2[0, j - 2]
的最长公共子序列,取最大的。
- 即:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
- dp数组如何初始化
先看看dp[i][0]应该是多少呢?
test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0。
其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。
- 确定遍历顺序
从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:
那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。
- 举例推导dp数组
以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:
最后红框 dp[text1.size()][text2.size()]
为最终结果
代码实现