在我们的一些应用程序中,常常避免不了要与数据库进行交互,而在我们的hadoop中,有时候也需要和数据库进行交互,比如说,数据分析的结果存入数据库,或者是,读取数据库的信息写入HDFS上,不过直接使用MapReduce操作数据库,这种情况在现实开发还是比较少,一般我们会采用Sqoop来进行数据的迁入,迁出,使用Hive分析数据集,大多数情况下,直接使用Hadoop访问关系型数据库,可能产生比较大的数据访问压力,尤其是在数据库还是单机的情况下,情况可能更加糟糕,在集群的模式下压力会相对少一些。 

那么,今天散仙就来看下,如何直接使用Hadoop1.2.0的MR来读写操作数据库,hadoop的API提供了DBOutputFormat和DBInputFormat这两个类,来进行与数据库交互,除此之外,我们还需要定义一个类似JAVA Bean的实体类,来与数据库的每行记录进行对应,通常这个类要实现Writable和DBWritable接口,来重写里面的4个方法以对应获取每行记录里面的各个字段信息。 

下面,我们先来看下如何使用MR来读取数据库的数据,并写入HDFS上, 
数据表的截图如下所示, 







 

实体类定义代码:  


<pre name="code" class="java">package com.qin.operadb; 




import java.io.DataInput; 


import java.io.DataOutput; 


import java.io.IOException; 


import java.sql.PreparedStatement; 


import java.sql.ResultSet; 


import java.sql.SQLException; 




import org.apache.hadoop.io.Text; 


import org.apache.hadoop.io.Writable; 


import org.apache.hadoop.mapreduce.lib.db.DBWritable; 




/*** 


* 封装数据库实体信息 


* 的记录 



* 搜索大数据技术交流群:376932160 



* **/ 


public class PersonRecoder implements Writable,DBWritable { 




public int id;//对应数据库中id字段 


public String name;//对应数据库中的name字段 


public int age;//对应数据库中的age字段 










@Override 


public void readFields(ResultSet result) throws SQLException { 






this.id=result.getInt(1); 


this.name=result.getString(2); 


this.age=result.getInt(3); 







@Override 


public void write(PreparedStatement stmt) throws SQLException { 




stmt.setInt(1, id); 


stmt.setString(2, name); 


stmt.setInt(3, age); 







@Override 


public void readFields(DataInput arg0) throws IOException { 


// TODO Auto-generated method stub 


this.id=arg0.readInt(); 


this.name=Text.readString(arg0); 


this.age=arg0.readInt(); 







@Override 


public void write(DataOutput out) throws IOException { 


// TODO Auto-generated method stub 


out.writeInt(id); 


Text.writeString(out, ​​this.name​​); 


out.writeInt(this.age); 







@Override 


public String toString() { 


// TODO Auto-generated method stub 


return "id: "+id+"  年龄: "+age+"   名字:"+name; 








</pre> 


MR类的定义代码,注意是一个Map Only作业:  


<pre name="code" class="java">package com.qin.operadb; 




import java.io.IOException; 




import org.apache.hadoop.conf.Configuration; 


import org.apache.hadoop.fs.FileSystem; 


import org.apache.hadoop.fs.Path; 


import org.apache.hadoop.io.LongWritable; 


import org.apache.hadoop.io.Text; 


import org.apache.hadoop.mapred.JobConf; 


import org.apache.hadoop.mapred.lib.IdentityReducer; 


import org.apache.hadoop.mapreduce.Job; 


import org.apache.hadoop.mapreduce.Mapper; 


import org.apache.hadoop.mapreduce.lib.db.DBConfiguration; 


import org.apache.hadoop.mapreduce.lib.db.DBInputFormat; 


import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 




public class ReadMapDB { 








/** 


* Map作业读取数据记录数 



* **/ 


private static class DBMap extends Mapper<LongWritable, PersonRecoder , LongWritable, Text>{ 


@Override 


protected void map(LongWritable key, PersonRecoder value,Context context) 


throws IOException, InterruptedException { 




context.write(new LongWritable(value.id), new Text(value.toString())); 








public static void main(String[] args)throws Exception { 






JobConf conf=new JobConf(ReadMapDB.class); 


//Configuration conf=new Configuration(); 


   // conf.set("mapred.job.tracker","192.168.75.130:9001"); 


//读取person中的数据字段 


// conf.setJar("tt.jar"); 




//注意这行代码放在最前面,进行初始化,否则会报 


DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver", "jdbc:mysql://192.168.211.36:3306/test", "root", "qin"); 




/**要读取的字段信息**/ 


String fileds[]=new String[]{"id","name","age"}; 


/**Job任务**/ 


Job job=new Job(conf, "readDB"); 


System.out.println("模式:  "+conf.get("mapred.job.tracker")); 




/**设置数据库输入格式的一些信息**/ 


DBInputFormat.setInput(job, PersonRecoder.class, "person", null, "id", fileds); 


/***设置输入格式*/ 


job.setInputFormatClass(DBInputFormat.class); 


job.setOutputKeyClass(LongWritable.class); 


job.setOutputValueClass(Text.class); 


job.setMapperClass(DBMap.class); 


String path="hdfs://192.168.75.130:9000/root/outputdb"; 


FileSystem fs=FileSystem.get(conf); 


Path p=new Path(path); 


if(fs.exists(p)){ 


fs.delete(p, true); 


System.out.println("输出路径存在,已删除!"); 



FileOutputFormat.setOutputPath(job,p ); 


System.exit(job.waitForCompletion(true) ? 0 : 1);  
































</pre> 


写入到HDFS目录下数据集:  




 

读取相对比较简单,需要注意的第一注意JDBC的驱动jar包要在各个节点上分别上传一份,第二是在main方法里的驱动类的编写顺序,以及数据信息的完整,才是正确连接数据库并读取的关键。  






下面来看下,如何使用MR,分析完数据后的结果,写入在数据库中,散仙本篇测试的是一个简单的WordCount的统计。我们先来看下数据库表的信息: 




 



实体类定义代码:  


<pre name="code" class="java">package com.qin.operadb; 




import java.io.DataInput; 


import java.io.DataOutput; 


import java.io.IOException; 


import java.sql.PreparedStatement; 


import java.sql.ResultSet; 


import java.sql.SQLException; 




import org.apache.hadoop.io.Text; 


import org.apache.hadoop.io.Writable; 


import org.apache.hadoop.mapreduce.lib.db.DBWritable; 




public class WordRecoder implements Writable,DBWritable { 




public String word; 


public int count; 






@Override 


public void readFields(ResultSet rs) throws SQLException { 




this.word=rs.getString(1); 


this.count=rs.getInt(2); 







@Override 


public void write(PreparedStatement ps) throws SQLException { 




ps.setString(1, this.word); 


ps.setInt(2, this.count); 







@Override 


public void readFields(DataInput in) throws IOException { 




  this.word=Text.readString(in); 


  this.count=in.readInt(); 







@Override 


public void write(DataOutput out) throws IOException { 


  


   


Text.writeString(out, this.word); 


out.writeInt(count); 
















</pre> 




统计的2个文件的内容所示:  




 

MR的核心类代码:  


<pre name="code" class="java">package com.qin.operadb; 




import java.io.IOException; 


import java.util.StringTokenizer; 




import org.apache.hadoop.fs.FileSystem; 


import org.apache.hadoop.fs.Path; 


import org.apache.hadoop.io.IntWritable; 


import org.apache.hadoop.io.LongWritable; 


import org.apache.hadoop.io.Text; 


import org.apache.hadoop.mapred.JobConf; 


import org.apache.hadoop.mapreduce.Job; 


import org.apache.hadoop.mapreduce.Mapper; 


import org.apache.hadoop.mapreduce.Reducer; 


import org.apache.hadoop.mapreduce.lib.db.DBConfiguration; 


import org.apache.hadoop.mapreduce.lib.db.DBInputFormat; 


import org.apache.hadoop.mapreduce.lib.db.DBOutputFormat; 


import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 


import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 


import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 






public class WriteMapDB { 








private static class WMap extends Mapper<LongWritable, Text, Text, IntWritable>{ 






/*** 


* Mapper的参数类型介绍 


* K,V,K,V分别依次代表 


* Map作业输入类型的K,输入类型的V 


* 后面两个是输出类型的K,输出类型的V 


* 后面的两个与 context.write(word, one); 


* 的两个参数是对应的 


* **/ 


private Text word=new Text(); 


private IntWritable one=new IntWritable(1); 




@Override 


protected void map(LongWritable key, Text value,Context context) 


throws IOException, InterruptedException { 




String line=value.toString(); 


//处理记事本UTF-8的BOM问题 




            if (line.getBytes().length > 0) { 




                if ((int) line.charAt(0) == 65279) { 




                    line = line.substring(1); 




                } 




            } 




StringTokenizer st=new StringTokenizer(line); 


while(st.hasMoreTokens()){ 


word.set(st.nextToken());//设置单词 


context.write(word, one); 





















/*** 


* 由于在reduce中,需要向数据库里写入 


* 数据,所以跟combine,不能共用 





* ***/ 


private static class WCombine extends Reducer<Text, IntWritable, Text, IntWritable>{ 




@Override 


protected void reduce(Text text, Iterable<IntWritable> value,Context context) 


throws IOException, InterruptedException { 






int sum=0; 




for(IntWritable iw:value){ 


sum+=iw.get(); 



context.write(text, new IntWritable(sum)); 


























/** 



* Reduce类 



* **/ 


private static class WReduce extends Reducer<Text, IntWritable, WordRecoder, Text>{ 






@Override 


protected void reduce(Text key, Iterable<IntWritable> values,Context context) 


throws IOException, InterruptedException { 




  int sum=0; 




  for(IntWritable s:values){ 


  sum+=s.get(); 


  } 


  


  


  WordRecoder wr=new WordRecoder(); 


  wr.word=key.toString(); 


  wr.count=sum; 


  


  //写出到数据库里 


  context.write(wr, new Text()); 
































public static void main(String[] args)throws Exception { 






JobConf conf=new JobConf(WriteMapDB.class); 


//Configuration conf=new Configuration(); 


   // conf.set("mapred.job.tracker","192.168.75.130:9001"); 


//读取person中的数据字段 


  //conf.setJar("tt.jar"); 


// conf.setNumReduceTasks(1); 


//注意这行代码放在最前面,进行初始化,否则会报 


/**建立数据库连接**/ 


DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver", "jdbc:mysql://192.168.211.36:3306/test?characterEncoding=utf-8", "root", "qin"); 


String fileds[]=new String[]{"word","count"}; 




Job job=new Job(conf, "writeDB"); 




System.out.println("运行模式:  "+conf.get("mapred.job.tracker")); 




/**设置输出表的的信息  第一个参数是job任务,第二个参数是表名,第三个参数字段项**/ 


DBOutputFormat.setOutput(job, "wordresult", fileds); 




/**设置DB的输入路径**/ 


job.setInputFormatClass(TextInputFormat.class); 


/**设置DB的输出路径**/ 


job.setOutputFormatClass(DBOutputFormat.class); 






/***设置Reduce的个数为1,可以得到全局统计的数字 


* 但,需要注意,在分布式环境下,最好不要设置为1,Reduce的个数 


* 正是Hadoop并发能力的体现 



* **/ 


// job.setNumReduceTasks(1); 






/**设置输出K路径**/ 


job.setOutputKeyClass(Text.class); 


/**设置输出V路径**/ 


job.setOutputValueClass(IntWritable.class); 






/**设置Map类**/ 


job.setMapperClass(WMap.class); 


/**设置Combiner类**/ 


job.setCombinerClass(WCombine.class); 


/**设置Reduce类**/ 


job.setReducerClass(WReduce.class); 








/**设置输入路径*/ 


FileInputFormat.setInputPaths(job, new Path("hdfs://192.168.75.130:9000/root/input")); 








System.exit(job.waitForCompletion(true) ? 0 : 1);  












</pre> 


运行状态如下所示:  


<pre name="code" class="java">运行模式:  192.168.75.130:9001 


14/03/26 20:26:59 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 


14/03/26 20:27:01 INFO input.FileInputFormat: Total input paths to process : 2 


14/03/26 20:27:01 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 


14/03/26 20:27:01 WARN snappy.LoadSnappy: Snappy native library not loaded 


14/03/26 20:27:01 INFO mapred.JobClient: Running job: job_201403262328_0006 


14/03/26 20:27:02 INFO mapred.JobClient:  map 0% reduce 0% 


14/03/26 20:27:10 INFO mapred.JobClient:  map 50% reduce 0% 


14/03/26 20:27:11 INFO mapred.JobClient:  map 100% reduce 0% 


14/03/26 20:27:18 INFO mapred.JobClient:  map 100% reduce 33% 


14/03/26 20:27:19 INFO mapred.JobClient:  map 100% reduce 100% 


14/03/26 20:27:20 INFO mapred.JobClient: Job complete: job_201403262328_0006 


14/03/26 20:27:20 INFO mapred.JobClient: Counters: 28 


14/03/26 20:27:20 INFO mapred.JobClient:   Job Counters 


14/03/26 20:27:20 INFO mapred.JobClient:     Launched reduce tasks=1 


14/03/26 20:27:20 INFO mapred.JobClient:     SLOTS_MILLIS_MAPS=10345 


14/03/26 20:27:20 INFO mapred.JobClient:     Total time spent by all reduces waiting after reserving slots (ms)=0 


14/03/26 20:27:20 INFO mapred.JobClient:     Total time spent by all maps waiting after reserving slots (ms)=0 


14/03/26 20:27:20 INFO mapred.JobClient:     Launched map tasks=2 


14/03/26 20:27:20 INFO mapred.JobClient:     Data-local map tasks=2 


14/03/26 20:27:20 INFO mapred.JobClient:     SLOTS_MILLIS_REDUCES=8911 


14/03/26 20:27:20 INFO mapred.JobClient:   File Output Format Counters 


14/03/26 20:27:20 INFO mapred.JobClient:     Bytes Written=0 


14/03/26 20:27:20 INFO mapred.JobClient:   FileSystemCounters 


14/03/26 20:27:20 INFO mapred.JobClient:     FILE_BYTES_READ=158 


14/03/26 20:27:20 INFO mapred.JobClient:     HDFS_BYTES_READ=325 


14/03/26 20:27:20 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=182065 


14/03/26 20:27:20 INFO mapred.JobClient:   File Input Format Counters 


14/03/26 20:27:20 INFO mapred.JobClient:     Bytes Read=107 


14/03/26 20:27:20 INFO mapred.JobClient:   Map-Reduce Framework 


14/03/26 20:27:20 INFO mapred.JobClient:     Map output materialized bytes=164 


14/03/26 20:27:20 INFO mapred.JobClient:     Map input records=6 


14/03/26 20:27:20 INFO mapred.JobClient:     Reduce shuffle bytes=164 


14/03/26 20:27:20 INFO mapred.JobClient:     Spilled Records=24 


14/03/26 20:27:20 INFO mapred.JobClient:     Map output bytes=185 


14/03/26 20:27:20 INFO mapred.JobClient:     Total committed heap usage (bytes)=336338944 


14/03/26 20:27:20 INFO mapred.JobClient:     CPU time spent (ms)=2850 


14/03/26 20:27:20 INFO mapred.JobClient:     Combine input records=20 


14/03/26 20:27:20 INFO mapred.JobClient:     SPLIT_RAW_BYTES=218 


14/03/26 20:27:20 INFO mapred.JobClient:     Reduce input records=12 


14/03/26 20:27:20 INFO mapred.JobClient:     Reduce input groups=8 


14/03/26 20:27:20 INFO mapred.JobClient:     Combine output records=12 


14/03/26 20:27:20 INFO mapred.JobClient:     Physical memory (bytes) snapshot=464982016 


14/03/26 20:27:20 INFO mapred.JobClient:     Reduce output records=8 


14/03/26 20:27:20 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=2182836224 


14/03/26 20:27:20 INFO mapred.JobClient:     Map output records=20 


</pre> 


最后,我们就可以去数据库里,查看统计的信息了,截图如下:  




 

至此,我们就完成了使用MR来读写数据库了,注意测试前,先确保自己的hadoop集群,可以正常工作。